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Abstract

The liquid-scintillator neutrino-detector (LSND) and mini booster neutrino
experiment (MiniBooNE) experiments claim to observe the oscillation ν̄µ→
ν̄e, which can only be explained by additional neutrinos and is a claim that
must be further tested. This thesis proposes a new accelerator and experi-
ment called neutrinos from stored muons (νSTORM) to refute or confirm
the oscillation these claims by studying the CPT-equivalent channel νe→ νµ.
A 3.8-GeV/c muon decay ring is proposed with neutrino detectors placed
20 m and 2000 m from the decay ring. The detector technology would be a
magnetized iron sampling calorimeter, where the magnetic field is induced
by a superconducting transmission line. In a frequentist study, the sensitivity
of this experiment after 5 years would be >10σ. The range of the thesis
discussion starts with the proton front-end design and ends with neutrino
parameter estimation. After describing the phenomenology of sterile neu-
trinos, the facility and detector performance work is presented. Finally, the
systematics are explained before the sensitivity and parameter-estimation
works are explained.
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Chapter 1

Introductory historical preamble:

mass-splittings and their anomalies

No one ever lost money betting that a

neutrino experiment was wrong!

D.H. Perkins

I lost 20 bucks on that #$%@ing

Opera speed-of-light thing!

C.D. Tunnell

This section is a non-technical layman’s introduction for historical context, and is written

in a Scientific American style. It can be skipped by physicists.

Neutrinos—fundamental building blocks of nature—seemingly disappear. At least

that was what experiments were seeing in the 1960s: a mere twenty years after the neu-

trino was discovered. Neutrinos are difficult to detect, and to neutrinos even something

the size of the Earth is more transparent than the clearest glass. The excitement of being

able to study neutrino interactions despite this difficulty was soon counteracted by utter

confusion: why were less neutrinos interacting than expected (i.e., deficits)?

14



Whether neutrinos were produced in the sun or atmosphere, there were measured

deficits, criticisms of the experiment, and skepticism in the theoretical models associated

with neutrino production. Each of these deficits—solar and atmospheric—were later un-

derstood in terms of neutrino oscillations and serve as examples of the chaotic beauty of

the scientific process. These mass splittings cause neutrinos to spontaneously—or rather,

quantum mechanically—change their species, which in the jargon is called “oscillations.”

The history of neutrino oscillation physics is the history of these mass splittings.

The study of solar neutrinos eventually led to the realization that neutrinos oscillate.

The fusion processes in the sun create electron neutrinos through (primarily) the proton–

proton solar cycle: protons fuse into helium and other unstable elements. This solar

neutrino flux was measured by Davis for the majority of his career, where he continually

measured the “wrong” answer compared to theory. His first limit on solar neutrinos—

around the time when Reines and Cowan discovered the neutrino—was actually at a

reactor antineutrino experiment. He was trying to observe a chlorine transition allowed

with neutrinos, but not antineutrinos, under the assumption that neutrinos were their

own antiparticle. He observed no effect, but also was worried about solar neutrino

backgrounds; therefore, he buried his detector a few meters underground to place a

limit on the solar-neutrino flux. Upon submitting his publication, his reviewer said this

was “like standing on a hill, waving your arms around, then saying the moon is more

than a few meters away.”

Davis went deeper underground and built bigger detectors. The experimental tech-

nique involved searching for the production of exotic radioactive isotopes—that only

neutrinos could produce—within a large vat of freon. A chemistry technique was used

to count the number of radioactive isotopes. His experiment, which should have been

sensitive to the solar standard model neutrino flux, observed no significant solar neu-

trino flux. This raised doubts about his experimental technique—counting neutrinos is

much harder than counting antineutrinos—and reenforced what physicists think about

15



chemists. He continuously improved his experiment until he eventually measured the

flux at a third of its expected value. After 30 years, the Kamiokande experiment con-

firmed Davis’s deficits. However, Kamiokande also demonstrate that these neutrinos

were coming from the sun; the electrons emerging from the neutrino interaction point

always pointed away from the sun.

It took 30 years before these deficits were confirmed by the Kamiokande experiment.

By using the directionality information of the neutrino interaction events, Kamiokande

showed that these events pointed back to the sun—i.e., came from the sun. However,

Kamiokande measured a different fraction of missing neutrinos than Davis, further in-

creasing the confusion.

50 years after Davis’s original experiment, the Sudbury Neutrino Observatory (SNO)

experiment established that Davis’s deficit was caused by neutrino oscillations. The

experiment used a different experimental technique, conceived by the late Herb Chen,

that allowed for counting the total number of neutrinos at the same time as counting

just electron neutrinos. The insight was that the neutral current (NC) interaction occurs

for the three known neutrinos, whereas at these energies the charged current (CC)

interaction only occurs for electron neutrinos. The discovery was that the neutrinos

were still there, but were no longer electron neutrinos. In the sun, they had oscillated

away, hence the deficits.

The other known mass splitting—the atmospheric—had a similar story: years of

confusions. In the late 1970s and 1980s, various experiments searched for proton decay,

which is a signal of various grand unified theories (GUTs), where the backgrounds are

primarily atmospheric neutrinos. The atmospheric neutrino flux uncertainty was ≈20%;

however, because the production mechanism (π→ µ+ ν̄µ then µ→ e + νµ + ν̄e) was

understood, the ratio of neutrino species was well known. The IMB and Kamiokande

data showed that νµ/νe ≈ 1 rather than the expected value of 2.

Similar to the solar neutrino case, the models and experiments were independently
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blamed. For instance, Frejus and NUSEX observed no effect. Later experiments like

Soudan 2 and MACRO confirmed the initial experiments that indicated a deficit. It was

not until Super-Kamiokande (Super-K) took data that the anomaly was determined

to be neutrino oscillations, when Super-K (1998) demonstrated a difference between

the upward and downward neutrino rates. All doubt about neutrino production being

the cause of the anomaly was resolved when the MINOS experiment (2006)—using

a detector similar to what will be discussed later—used neutrinos produced from an

accelerator and confirmed the Super-K results.

Neutrino oscillations are firmly established by roughly a dozen experiments with

different sources, detectors, and at different baselines and energies. Much is known

about neutrinos, such as that they are—sadly—not massive enough to be dark matter.

What is less firmly established is whether or not these two mass splittings are the entire

story.

A current question in neutrino physics is whether there is another large mass splitting

(≈1 eV) that results in the existence of another yet-undiscovered “sterile” neutrino

with no known interactions. Evidence from the liquid scintillator neutrino detector

(LSND) experiment suggests this may be the case. Some experiments confirm it, yet

other experiments refute the effect. A definitive experiment called Booster neutrino

experiment (BooNE) was to be built to address this problem. Due to budget constraints

it became MiniBooNE, and was unable to make definitive conclusions.

Regardless of the LSND anomaly, how does one probe the large mass splitting regime

to determine if there are oscillations not accounted for in the standard paradigm? One

should not ignore experimental anomalies. A definite experiment is required and pro-

posed in the remainder of this thesis.

In Chap. 2, the theoretical and experimental status of neutrino oscillations is pre-

sented such that a nonspecialist particle physicist can understand. In Chap. 3, a new

experiment is designed and proposed using simple arguments, which are strengthened
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in the subsequent chapters. In Chap. 4, the details of the accelerator and detector are

described. The detector performance is described in Chap. 5, where a detailed Monte

Carlo study is developed. The sensitivity to sterile neutrinos is demonstrated in Chap. 6

followed by a discussion of systematics and backgrounds in Chap. 7. The precision is

discussed in Chap. 8. Lastly, conclusions are included in Chap. 9.
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Chapter 2

Phenomenology of neutrino

oscillations

There are two ways to slide easily

through life; to believe everything or

to doubt everything. Both ways save

us from thinking.

A. Korzybski

This chapter is intended for particle physicists who do not specialize in neutrinos, and

can be skipped by neutrino physicists.

The standard neutrino framework has two main features. First, neutrinos have a

relatively small mass and their mixing is different from that of quarks. Second, the

mechanism for generating small neutrino masses is unknown. The main challenge to

this model is the developing evidence for additional neutrinos without Standard Model

interactions (i.e., sterile neutrinos).

In the first section, the phenomenology and experimental summary of three-neutrino

oscillations are presented. After that, to accommodate sterile neutrinos, the three-neutrino

formalism is extended and various anomalies are discussed.
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Figure 2.1: Measurements of the hadron-production cross section around the Z0 reso-
nance. Shown are the data and predicted cross sections for two, three, and four active
neutrinos [1].

2.1 Three neutrinos

2.1.1 Neutrino flavors

The three known neutrinos interact via the electroweak interaction (i.e., are charged

under the electroweak gauge); therefore, studying the Z0 and W± bosons provides

information about neutrinos. The invisible width of Z0 decays was measured at the Large

Electron–Positron Collider (LEP) and is consistent (Fig. 2.1) with three neutrinos—more

specifically, three neutrinos with electroweak interactions and masses below 45 GeV=

mZ/2. An example of an active neutrino would be the one in the decay W+→ µ+ν. The

neutrino in the final state is defined to be a muon neutrino νµ, and if the neutrino were

forced to interact instantaneously (i.e., before “oscillation”), the neutrino would always

produce a µ in CC interactions. Similar arguments can “label” neutrinos associated with

the other charged leptons e and τ.
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2.1.2 Mixing

Neutrino mixing occurs when the flavor-basis eigenstates are different from the mass-

basis eigenstates (see the review in [2]). The decay W+→ µ+ν results in a flavor-state

neutrino, and may be written in the mass-basis as W+ → l+
∑

i Ul iνi with amplitude

Ul i, where i identifies the mass eigenstate. These amplitudes form a matrix that may be

written explicitly for three neutrinos as

U3×3 =











Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3











, (2.1)

where U3×3 is called the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix.

Neutrinos can mix if U is not diagonal. This matrix is frequently presented in terms

of the product of rotation matrices: U3×3 = R23(θ23, 0)R13(θ13,δ)R12(θ12, 0), where Ri j

represents a rotation between the ith and jth mass eigenstates and δ is a nonfactoriz-

able Dirac CP-violating phase. The rotation order is just convention. More formally, the

rotation is

[Ri j(θi j,δl)]pq =























































cosθi j if p = q = i, j

1 if p = q 6= i, j

sinθi je
−iδl if p = i; q = j

− sinθi je
iδl if p = j; q = i

0 otherwise.

(2.2)

All the mixing angles in U(θ13,θ13,θ13,δ) are known to be nonzero at greater than

5σ (as will be discussed in Sec. 2.1.4); however, the phase δ is unknown and is ignored

in this thesis unless otherwise stated. Experiments are being planned to measure this

phase to complete our understanding of U .
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2.1.3 Oscillations

As neutrinos propagate, mixing results in oscillations between eigenstates. In the pre-

vious example of W+→ µ+νµ decay, if the neutrino was not detected instantaneously,

then it is possible for a νe to be detected at a later time due to the evolution of the

νµ state in time and space. This evolution is well described by the Schrödinger view

of quantum mechanics using plane waves (reviewed in [3]). Treatments using wave

packets [4–8] and field theory [9] are indistinguishable experimentally at present and

therefore not discussed. An illustrative treatment is presented, but the previously cited

works are more complete.

Neutrinos produced by CC interactions are initially in pure flavor states, which later

evolve. At t = 0, the initial state vector |να(t = 0)〉 is

|να(t = 0)〉=
∑

k

Uαk |νk(t = 0)〉 , (2.3)

where α ∈ {e,µ,τ} and k is summed over mass eigenstates. There must be at least three

mass eigenstates since three active light neutrino flavors exist, and U must be Unitary.

The Schrödinger equation describes the evolution of |να(t = 0)〉 in time,

d
d t
|νk(t)〉= Ek |νk(t)〉 , (2.4)

where Ek are the energy eigenvalues associated with the Hamiltonian in vacuum (i.e.,

H |νk〉= Ek |νk〉). The plane-wave solution results in

|νk(t)〉= e−iEk t |νk(0)〉 . (2.5)

Using Eq. (2.3), it can be seen that

|να(t)〉=
∑

k

Uαke−iEk t |νk(0)〉 , (2.6)
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where the flavor state is represented by the evolution of mass eigenstates. However, the

mass eigenstates on the right can be represented as flavor states by inverting Eq. (2.3):

|νk〉=
∑

α

Uαk |να〉 . (2.7)

Assuming that U is real, which is approximately true for our purposes, then substi-

tuting this equation into the right-hand side of Eq. (2.6) yields

|να(t)〉=
∑

k

∑

β

Uαke−iEk t Uβk |νβ〉 . (2.8)

Therefore, an initial flavor state |να(0)〉, which is just a superposition of mass states

|νk(0)〉, becomes a superposition of different flavor states as it travels. This requires that

U not be diagonal.

Quantum amplitudes are unobservable, and detectable neutrinos are relativistic.

Neutrino experiments measure the probability of a neutrino oscillating between two

flavor states Pαβ , where the probability is related to the amplitude by

Pαβ = |Aαβ |2 = |



να
�

�νβ(t)
�

|2 (2.9)

= |
∑

k

Uαke−iEk t Uβk|2 (2.10)

=
∑

k, j

UαkUβkUα jUβ je
−i(Ek−E j)t (2.11)

=
∑

k, j

UαkUβkUα jUβ je
−i∆m2

i j
2E L, (2.12)

where ∆m2
i j = m2

j − m2
i . In the last line, a relativistic approximation is used (t ' L);

therefore, the dispersion relation is expanded such that

Ek =
p

p2 +m2 ' pk +m2
k/2E (2.13)
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because m� p for any detectable neutrino.

The prediction in Eq. (2.12) is that neutrinos can turn into other neutrinos. Or rather,

when the quantum wave function |να(t)〉 in Eq. (2.8) collapses, Eq. (2.12) describes

the probability of transforming into another neutrino flavor. If U is not diagonal, then

this probability of Eq. (2.12) is nonzero when α 6= β . The implication is the violation

of lepton number; if oscillations is viewed—very roughly—as a black box, electrons can

turn into muons. As mentioned before, the derivation can be performed in numerous

ways and even more directly (e.g., scattering matrix (S-matrix) formalism); regardless,

neutrinos oscillate among flavors.

When mixing between three neutrinos is considered, the sums in Eq. (2.12) can be

tedious. Simplifications can be made, but do not elucidate much. Computer programs

are typically used to compute 3×3 oscillation probabilities, mainly to help bookkeeping.

In certain circumstances, it is possible to make assumptions that result in the oscillation

probabilities simplifying. For example, if there are effectively two neutrinos due to the

experiment not being sensitive to other mass splittings—as is the case later in Eq. (2.16)—

then the appearance probability can be written, if α 6= β , as the more familiar expression

Pαβ = sin(2θαβ) sin
2
�

∆m2 L
4E

�

. (2.14)

2.1.4 Experimental status of three-neutrino mixing

The Super-K experiment [10–12] provided concrete evidence that neutrinos oscillate and

thus have mass, so for the last 15 years experiments have been studying neutrino mass.

Three methods are used to study neutrino masses and mixing: end-point measurements

of β-decay spectra, neutrinoless double-β-decay (0νDBD) experiments, and neutrino

oscillation experiments. At present, the absolute scale of the heaviest mass eigenstate is

constrained between 1 eV from end-point measurements and 0.05 eV=
Æ

∆m2
31 from

oscillation physics. Double-β -decay experiments have yet to produce conclusive results.
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Figure 2.2: 0νDBD Feynman diagram. Two decays n→ p+ν̄ee
−, but with “annihilation”

of the neutrinos.

In β decay (n → p+ν̄ee
−), measurements of the electron energy lead to the best

understanding of the absolute mass scale of neutrinos. These experiments compare the

maximum electron energy Ee with the free energy Q of the decay process to determine

the neutrino energy Eν = Q− Ee. This type of experiment also has the longest history:

the shape of the β spectrum led Pauli to postulate that neutrinos had a mass smaller

than the electron. As experimenters tried to measure the neutrino mass and failed,

the upper limits on the allowed value became more stringent. Eventually, after parity

violation was discovered in β decays, the neutrino was assumed to be massless in the

two-component theory by Landau [13], Lee and Yang [14], and Salam [15]. Current

limits on the squared electron neutrino mass include 2.05 eV2 from β-decay results

and 5.7 eV2 from the Supernova 1987A [2]. By extending the work from the Mainz

and Troitsk experiments, KATRIN experiment should be sensitive above 0.2 eV2 [16].

However, at present the exact mass of the neutrino is unknown.

Neutrinos having mass may allow for interesting processes such as 0νDBD (Fig. 2.2),

where the neutrinos in double-β decay seemingly annihilate. Depending on which
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equation of motion (Dirac or Majorana) neutrinos obey, neutrinos may—as is said

colloquially—be their own antiparticles. The experimental signature of 0νDBD is two

electrons whose kinetic energy is equal to the nuclei binding energy difference. EXO,

Kamland-Zen, SNO+, SuperNEMO, and others are searching for this process. If this pro-

cess is observed, it could help explain the baryon asymmetry in the Universe; this process

motivates a heavy neutrino with above the energies that can be explored terrestrially

(� TeV) and that could have decayed in the early Universe and violated CP. Majorana

neutrino experiments provide an important input to understanding of neutrinos and the

Universe.

Neutrino oscillation experiments provide information on the differences between

neutrino mass eigenstates and can be sensitive to CP violation in the lepton sector.

Precision measurements of oscillation parameters may reveal structure that advance

the theoretical models of neutrino mass generation. Nevertheless, a dominant theory

at present is called anarchy [17], which suggests that the mixing matrix is random and

nothing can be learned by studying it further. The limited experimental precision of the

current oscillation parameters prevents finding any structure within the mixing matrix.

Super-K (1998) and SNO (2002) established neutrino oscillations with atmospheric

(|∆m2
32| = 2.7 × 10−3 eV2) and solar neutrinos (∆m2

21 = 7 × 10−5 eV2), respectively.

Successive experiments (Fig. 2.3) have confirmed their results using neutrino sources

ranging from cosmic-ray interactions with the atmosphere, the Sun, supernovae, reac-

tors, radioactive sources, and accelerator beams. Super-K and MINOS primarily measure

|∆m2
23| and sin2 θ23, whereas SNO and Kamland constrain sin2 θ12 and ∆m2

21, respec-

tively. Recently, the Daya Bay reactor neutrino experiment collaboration discovered that

sin2 θ13 6= 0. This result has been confirmed by the T2K and RENO experiments—T2K

published a 2.5σ result before Daya Bay, which would have had better statistics if not

for the 2011 Tōhoku earthquake (and tsunami) that damaged their accelerator facility

J-PARC. The current understanding of 3× 3 mixing is shown in Table 2.1.
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Table 2.1: Neutrino oscillation parameters. For∆m2
31, sin2 θ23, sin2 θ13, and δ the upper

(lower) row corresponds to normal (inverted) neutrino mass hierarchy [19].

Parameter 3σ range
∆m2

21 [10−5 eV2] 7.12–8.20

|∆m2
31| [10−3 eV2]

2.31–2.74
2.21–2.64

sin2 θ12 0.27–0.37

sin2 θ23
0.36–0.68
0.37–0.67

sin2 θ13 0.017–0.033
δ 0–2 π

At present, the mass hierarchy (i.e., m3 > m1 or m3 < m1) and value of the CP phase

δ are unknown. Numerous proposals are being considered that can make hierarchy

measurements using matter effects—the earth contains electrons but not positrons, and

this discriminates the mass eigenstates by changing the effective neutrino mass. This

CP phase is interesting due to its theoretical relations to leptogenesis; however, δ 6=

0 does not imply leptogenesis, and vice versa. The ultimate goal for many neutrino

physicists is to constrain the 3× 3 PMNS matrix U to levels comparable to those of the

Cabibbo–Kobayashi–Maskawa (CKM) matrix. The main motivation is to understand the

mechanism that gives neutrinos mass. This mechanism—hopefully—arises from new

physics at energies unreachable by colliders [18].

2.1.5 Conclusion

Within the standard theory of neutrino mixing and oscillations, only three neutrinos

are assumed and most data is understood in this framework. Over a dozen experiments

have been performed, and future experiments will improve upon this understanding.
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2.2 Sterile neutrinos

Before I came here I was confused

about this subject. Having listened to

your lecture I am still confused. But

on a higher level.

Enrico Fermi

In this section, the motivation for the study of sterile neutrinos is discussed, as well as

the various astrophysical and terrestrial evidence for them. The status of global sterile

fits is presented and future sterile neutrino experiments reviewed. A comprehensive

literature review focusing on sterile neutrinos is available in [20].

Sterile neutrino results indicating the existence of an electronvolt-scale neutrino are

contentious. An electronvolt-scale neutrino would affect solar, atmospheric, supernova,

β -decay, and cosmological (nucleosynthesis, extra radiation of the universe, large scale

structure formation) experiments. However, only a subset of these experiments claim an

effect. No model fits all experimental results well. At present, it is not known whether

or not sterile neutrinos exist.

2.2.1 Theory of sterile neutrinos

There is no strong theoretical motivation for sterile neutrinos with masses observable by

neutrino oscillation experiments. There are nevertheless theoretical ideas. For example,

a low-energy seesaw with a light Majorana neutrino on the order of 1 eV explains all

sterile neutrino data [21]. The problem is that this is at the expense of the reason for the

seesaw mechanism: explaining why neutrinos are light. Most GUT models either predict

sterile neutrinos or easily accommodated them, but give no further guidance as to their

mass. The difficulty is that there is no a priori mass scale but are then unobservable at

neutrino oscillation experiments. Nevertheless, if there is a light sterile neutrino, then

the oscillation phenomenology that follows applies.
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2.2.2 Sterile neutrino oscillations

The formalism that was used for 3 × 3 neutrino oscillations can easily be extended

to accommodate more neutrinos. In the previous formalism in Eq. (2.3) on p.p. 22,

additional mass eigenstates are already accommodated by extending the sum over the k

mass eigenstates. The 3× 3 unitarity mixing matrix has a convenient representation in

terms of rotations and the same is possible for N ×N unitarity matrices. For 3×3 mixing

matrices, it was shown that U3×3 = R23R13R12. Using a similar convention for ordering

the rotations, higher dimensional matrices can be defined: U4×4 = R34R24R14U3×3, U5×5 =

R45R35R25R15U4×4, and by induction any UN×N . Rotations are defined such that

Ri j =





































1 . . . 0 . . . 0 . . . 0
...

...
...

...

0 . . . cosθi j . . . sinθi j . . . 0
...

...
...

...

0 . . . − sinθi j . . . cosθi j . . . 0
...

...
...

...

0 . . . 0 . . . 0 . . . 1





































. (2.15)

Most data analyses and studies related to sterile neutrinos are sensitive to only one

additional neutrino; therefore, only one additional neutrino is assumed here. These

so-called (3+1) models have an additional mass eigenstate m4 that is much heavier

than the other mass eigenstates (m4� m3, m2, m1), resulting in the ability to only probe

one mass splitting (i.e., single-hierarchy dominance) and the inability to observe CP

violation at short baselines (see, e.g., p. 273 of [3]). Two sterile neutrinos are required

[i.e. (3+2) model] to observe CP violation at short baselines.

The evidence, that will be discussed shortly, for the existence of sterile neutrinos

favors a sterile neutrino at 1 eV. Therefore, ∆m2
41 ' 1 eV2. The L/E where the effects

of this additional neutrino become evidence is around L/E ∼ km/GeV; short baselines
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Figure 2.4: Pictorial motivation for νe→ νµ oscillations.

relative to most other neutrino experiments must be used to probe mixing elements

relevant to an electron-volt scale neutrino. In the short baseline approximation (i.e.,

∆m2
41 � ∆m2

31), the submatrix U3×3 can be approximated as the unit matrix since it

does not influence short-baseline oscillations. Therefore, U4×4 becomes

U4×4 =

















cosθ14 0 0 sinθ14

− sinθ14 sinθ24 cosθ24 0 sinθ24 cosθ14

− sinθ14 sinθ34 cosθ24 − sinθ24 sinθ34 cosθ34 sinθ34 cosθ14 cosθ24

− sinθ14 cosθ24 cosθ34 − sinθ24 cosθ34 − sinθ34 cosθ14 cosθ24 cosθ34

















,

where it is useful to note that Ue4 = sin(θ14) and Uµ4 = sin(θ24) cos(θ14).

Oscillation probabilities can be computed using Eq. (2.12). All sterile neutrino data

is understood in terms of three types of transitions (assuming CP is conserved): νe→ νe,

νµ → νµ, and νe ↔ νµ. Interestingly, the addition of a massive sterile neutrino flavor

state can affect the oscillations between νe → νµ: the νe oscillates into the sterile νs

state, then into the νµ state (Fig. 2.4). Explicitly, in a (3+1) framework, where CP must
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be conserved at short baselines, the probabilities are

Pνe→νe
= 1− 4

�

1− |Ue4|2
�

|Ue4|2 sin2

�

∆m2
41 L

4E

�

(2.16)

= 1− sin2(2θee) sin
2

�

∆m2
41 L

4E

�

, (2.17)

Pνµ→νµ = 1− 4
�

1− |Uµ4|2
�

|Uµ4|2 sin2

�

∆m2
41 L

4E

�

(2.18)

= 1− sin2(2θµµ) sin
2

�

∆m2
41 L

4E

�

, (2.19)

Pνe↔νµ
= 4|Ue4|2|Uµ4|2 sin2

�

∆m2
41 L

4E

�

(2.20)

= sin2(2θeµ) sin
2

�

∆m2
41 L

4E

�

, (2.21)

in the short baseline limit (∆m2
41

L
E ∼ 1 and ∆m2

31
L
E � 1), where the definitions for

sin2(2θee), sin2(2θµµ), and sin2(2θeµ) have been introduced.

A few observations can be made that will help understand the relations between

the above oscillation probabilities. All three oscillation channels are coupled since each

depends on the mass splitting ∆m2
41, although the channels differ in their dependence

on U . Note that the disappearance channels depend only upon one matrix element

Pνe→νe
∼ |Ue4|2 and Pνµ→νµ ∼ |Uµ4|2, whereas the appearance channel Pνe↔νµ

depends on

the product |Ue4|2|Uµ4|2. Therefore, any nonzero appearance signal implies two nonzero

disappearance signals:

Pνe↔νµ
6= 0 ⇐⇒

�

Pνµ→νµ 6= 0 and Pνe→νe
6= 0

�

. (2.22)

By unitarity, every matrix element is required by be less than 1, and both |Ue4|2 and

|Uµ4|2 must be small due to numerous experimental results. A comparison can be made

to Cabibbo suppression. Disappearance deficits are singly suppressed by a small number

|Ul4|2 and appearance measurements are doubly suppressed; hence small appearance
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probabilities should result in larger disappearance deficits.

This simple relation [Eq. (2.22)]—as explained later in greater detail—results in

tension in global sterile neutrino fits. Deficits are seen in electron disappearance and

appearance measurements, but not in muon disappearance. Either new physics has been

discovered, or some experiments are wrong.

2.2.3 Evidence for sterile neutrinos

The strongest evidence for sterile neutrinos comes from the LSND experiment [22],

which was an oscillation experiment that started taking data in 1993. It used neutrinos

produced from a proton target and beam stop at the Los Alamos meson physics facility

(LAMPF). The experiment was sensitive to neutrinos at ≈1 eV2 (i.e., L/E ∼ m/MeV),

with ≈60 MeV neutrinos at a baseline of 30 m. The intention was to measure ν̄µ→ ν̄e

oscillations by the following method:

1. Proton–nucleon interactions produce π+ and π− in a target.

2. Both pion species are stopped in the beam stop.

3. π− are captured in a nucleus because they have the same charge as the electron.

π+ are not captured.

4. The decay π+→ µ+νµ occurs.

5. The µ+ stops as well and decays µ+→ ν̄µνee
+, where all neutrinos are at energies

below the muon rest mass of mµ = 106 MeV.

6. Identify ν̄e.

Three neutrino flavors are produced: νµ, ν̄µ, and νe. The proton pulse is 0.25 µs

thus with adequate detector timing, the νµ from pion decay can be separated from the

neutrinos from muon decay because it will be produced earlier. Therefore, if any ν̄e are
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detected, they must come from ν̄µ→ ν̄e transitions because early reactor experiments

have shown that νe→ ν̄e transitions are not possible [23]. Therefore, the detector was

required to have good discrimination between νe from muon decay and ν̄e.

The detection of ν̄e at these energies is straightforward experimentally—unlike νe

and
(−)
νµ—using the inverse-β -decay reaction ν̄e+p→ n+e+. Detecting this reaction relies

upon the double coincidence of having a positron that annihilates quickly followed by

the delayed capture of the neutron. Both the annihilation and neutron capture produce

γs and release >1.0 MeV and 2.2 MeV of energy, respectively.

The detector was located 30 m from the beam stop and was composed of 167 t of

mineral oil doped with scintillant. Any energy deposited resulted in scintillation light

that was detected by 1220 8” photomultiplier tubes (PMTs) covering 25% of the surface

area of the tank. To reduce external backgrounds, the detector was shielded by steel. A

veto was used to reject cosmic ray muons, which traversed the detector at 4 Hz. These

muons were also used to calibrate the e+ and e− response.

An analysis based on timing was performed to determine the ν̄e rates. LSND observed

an excess of 87.9± 22.4 (stat.)± 6.0 (sys.) ν̄e interactions above a background of 30

events, providing evidence for the transition ν̄µ→ ν̄e at 3.8σ.
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Table 2.2: Parameters of the LSND and KARMEN experiments, a shortened version
of [20].

Property LSND KARMEN
Proton energy (MeV) 798 800
Protons on target 1.8× 1023 5.8× 1022

Total mass (t) 167 56
Neutrino distance (m) 30 17.7
Events for 100% ν̄µ→ ν̄e transmutation 33,300 14,000

However, results from the KARMEN experiment do not agree with the LSND excess,

which had a similar experimental setup and detector (Table 2.2). In a similar analysis

to LSND, KARMEN observed no excess: 15 ν̄e events were observed with an expected

background of 15.8. The experimental setups had slightly different sensitivities, due to

their different baselines. A joint fit of KARMEN and LSND data shows that they may be

compatible for mass splittings of 7 eV2 or below 1 eV2 [24].

The situation is further confused by results from the MiniBooNE—formerly BooNE—

experiment, which both refuted [25,26] and confirmed [27] the LSND signal. The ex-

perimental goal was to explore the LSND anomaly at higher energies while maintaining

the same L/E. The experimental setup was similar (i.e., mineral oil, scintillator and

PMTs); however, the beam was different. Instead of using a decay-at-rest beam, the

experimenters decided to use a conventional pion beam π±→ µ± +
(−)
νµ.

However, external considerations resulted in an unanticipated loss of physics sensi-

tivity for BooNE due to the absence of a near detector (how BooNE became MiniBooNE).

Initially, the appearance [26] and disappearance [25] data excluded the (3+ 1) model

of the LSND anomaly; however, an unexpected electronlike low-energy excess was ob-

served. Numerous fits were performed including or excluding the low-energy excess,

with many fits suggesting a second sterile neutrino. (See [28] and references therein.)

Brief tension in the sterile neutrino fits between neutrino and antineutrino data resolved

itself with more statistics. At present, neutrino and antineutrino data from MiniBooNE

favor a sterile neutrino at 3.8σ [27].
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Figure 2.6: The short-baseline reactor antineutrino anomaly using the newly com-
puted fluxes. The red line shows a possible three-active-neutrino mixing solution, with
sin2(2θ13) = 0.06. The blue line displays a solution including a new neutrino mass state
[|∆m2

41| � 1 eV2 and sin2(2θee) = 0.12] but does not include 3× 3 oscillations . (Text
and figure partially reproduced from [29].)

The appearance anomaly observed by LSND has implications for other experiments

[Eq. (2.22)], some of which may have been observed. For example, an electronvolt-scale

sterile neutrino requires electron neutrino disappearance at short baselines, and reactor

neutrino experiments observe this effect.

Until 2011, experiments at distances of<100 m from the reactor core—ILL-Grenoble,

Goesgen, Rovno, Krasnoyarsk, Savannah River, and Bugey—agreed with the predicted

reactor antineutrino flux with a measured/expected ratio of 0.976±0.024. However, as

part of the preparations for the reactor neutrino experiment Double Chooz, these fluxes

were recomputed [29]. Previously, the model of the neutrino flux was phenomenological

and based on 30 effective branches, whereas the new analysis took into account the

detailed knowledge of the decays of thousands of fission products. Both the new and

old models are constrained by the flux measurements at ILL-Grenoble. Over the past 15

years, the measured neutron lifetime has evolved from 926± 11 s [30] to the current

PDG average value of 880.1± 1.1 s, resulting in an increase of the predicted neutrino

cross section. The result was a larger deficit of 5.7%, where the measured/expected
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Figure 2.7: 90% confidence level (CL) sensitivity (dot-dash curve) and 90% CL limit
(solid black curve) from simultaneous MiniBooNE/SciBooNE fit, and 90% CL limit from
the spectrum fit method (red dashed curve). Previous limits from CCFR, CDHSW, MINOS,
and MiniBooNE are also shown. (Text and figure reproduced from [20].)

ratio was 0.943± 0.023 (Fig. 2.6). This calculation was confirmed by Huber [31]. One

explanation for this reactor neutrino anomaly is the short-baseline disappearance of

neutrinos; however, the evidence is unconvincing on its own.

Similar anomalies are observed in radioactive decay experiments. For example, in the

GALLEX and SAGE solar neutrino experiments, 51Cr and 37Ar radioactive sources were

used as calibrations. For all the combinations of source-type and experiment, deficits

were observed, although the significance arises only when combining data from the

experiments. Assuming Gaussian errors, a 2.8σ effect (motivated in [32]) led to the

gallium anomaly, which may be explained by the existence of sterile neutrinos.

However, not all disappearance results indicate sterile neutrinos: the CDHSW [33],

CCFR [34], and MINOS [35] experiments do not observe a corroborating muon-neutrino

disappearance signal at large L/E [required by Eq. (2.22)]. At large L/E, the oscillation
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probability should be in the averaging regime and result in additional deficits beyond

θ23 on the order of a few percent. The CDHSW experiment had a peak neutrino energy

of 3 GeV—it used CERN’s PS accelerator rather than the SPS used for deep inelastic

scattering (DIS) studies—and a baseline of about 100 m; however, no oscillations were

observed. The CCFR collaboration performed experiments using a νµ beam from protons

with energies in the range 40–230 GeV and a ν̄µ beam with a peak proton energy of 165

GeV. They performed oscillation studies where the combined neutrino and antineutrino

analysis had a χ2 for the null hypothesis of 15.7 for 18 degrees of freedom. These

experiment’s results are not compatible with any number of sterile neutrinos (Fig. 2.7).

2.2.4 Global fit

The data from the experiments discussed above can be understood within a single

parameter-estimation fit, taking advantage of the wide range of oscillation channels,

baselines, and energies. Different scenarios assuming a different number of sterile neu-

trinos can be considered. However, fits assuming either a (3+ 1) [20], (3+ 2) [36], or

(3+ 3) [37] model result in fits of comparable quality.

Fits have also been performed using different subsets of experiments, which is useful

for assessing data consistencies within the same channel. The data was divided into

three channels: the two disappearance channels
(−)
νe→

(−)
νe and

(−)
νµ→

(−)
νµ and the appear-

ance channel
(−)
νµ →

(−)
νe. Combining the electron appearance and disappearance data

always results in tension with muon disappearance data. In [20], a global (3+1) fit was

performed and described—paraphrasing their paper for this thesis—including:

• The short-baseline
(−)
νµ→

(−)
νe data of the LSND, KARMEN, NOMAD, and MiniBooNE

(neutrino and antineutrino) experiments.

• The short-baseline ν̄e disappearance data of the Bugey-3, Bugey-4, ROVNO91,

Gosgen, ILL, and Krasnoyarsk reactor antineutrino experiments and the KamLAND
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Figure 2.8: Allowed regions in the sin2 2θeµ–∆m2
41, sin2 2θee–∆m2

41, and sin2 2θµµ–∆m2
41

planes obtained by global analyses of short-baseline neutrino oscillation data. The best-
fit points are indicated by crosses. The thick solid-blue lines with the label APP show
the 3σ allowed regions obtained from the analysis of

(−)
νµ →

(−)
νe appearance data. The

thick solid-red lines with the label DIS show the 3σ allowed regions obtained from the
analysis of disappearance data. (Text and figure reproduced from [20].)

bound on |Ue4|2.

• The short-baseline νµ disappearance data of the CDHSW experiment, the con-

straints on |Uµ4|2 from the analysis of the data of atmospheric neutrino oscillation

experiments, and the information on |Uµ4|2 obtained from MINOS neutral-current

data.

• The data of gallium radioactive source experiments (GALLEX and SAGE).

• The νe+ 12C→ 12Nground state+ e− scattering data of the KARMEN and LSND exper-

iments, which constrain the short-baseline νe disappearance.

The χ2 of a spectral fit to the above experiments is minimized at 1 eV2 when combin-

ing both appearance and disappearance data, agreeing with the initial claims of LSND

(Fig. 2.8). However, when fit independently, the appearance and disappearance data

favor different regions of parameter space. This inconsistency is not solved by adding

more than one additional sterile neutrino.
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If the data can be explained by neutrino oscillations alone, rather than some other

new physics, then one or more experiment is wrong. An experiment that can probe all

of these channels would be advantageous, given the complications of combining data

from different experiments.

2.2.5 Future experiments

Future experiments must be sensitive to the LSND anomaly, while also resolving the

differences between appearance and disappearance results. The history of having had

numerous nondefinitive experiments means that future experiments must be sensitive

to this effect at greater than 5σ and should rely on proven technologies.

Funded experiments will take data shortly (see [38] and references therein) that may

marginally increase our understanding of sterile neutrinos. The MINOS+ experiment will

take data in the high-energy NuMI beam, concurrently with NoVA, and should provide

more data for the muon disappearance channel. The µBooNE experiment is a liquid

argon (LAr) time projection chamber (TPC) that will be placed in a Fermilab booster

beamline and should determine the origin of the MiniBooNE low-energy excess, but it

will not resolve the tensions in oscillation fits.

Countless experiments have been—and continue to be—proposed. A partial list is

given in Table 2.3. In addition to the topic of this thesis, various experimental techniques

may be sensitive to sterile neutrinos at 5σ.

Two LAr TPCs are being proposed at either CERN (ICARUS/NESSiE) or Fermilab

(LAr1). Both experiments intend to use a conventional beam aided by having a near

detector. These experiments have the advantage that they also provide useful detector

R&D.

Also under consideration is the deployment of an MCi radioactive source in the detec-

tor halls of either Borexino, SNO+, or Daya Bay, which are low-energy (≈MeV) neutrino

detectors. Radioactive sources provide megaelectronvolt neutrinos and, if sterile neu-
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Table 2.3: Nonexhaustive list of past and future planned experiments able to probe
oscillations to sterile neutrinos. Details include the type of experiment (decay-at-rest,
short baseline, reactor, etc.), how they are sensitive to oscillations (rate, energy spectrum,
and/or length dependence), and the reaction channel probed (either CC, NC, or elastic
scattering (ES)). Past experiments are denoted by †. Names in italics are proposed
experiments. (Table reproduced and modified from [20].)

Experiment(s) Source Type Sensitivity Channel
LSND† Decay-at-rest ν̄µ→ ν̄e Rate, energy CC
MiniBooNE† Short baseline ν̄µ→ ν̄e Rate, energy CC
Reactor measurements† Reactor ν̄e dis. Rate CC
Gallium anomaly† EC source νe dis. Rate CC
Future decay-at-rest
(OscSNS) Decay-at-rest ν̄µ→ ν̄e Rate, energy CC

ν dis. Rate NC
Future short baseline

(µBooNE, BooNE, Short baseline
(−)
νµ→

(−)
νe Rate, energy CC

NESSiE, LArLAr)
(−)
νµ dis. Rate, energy CC

(νSTORM; this thesis) Short baseline
(−)
νe→

(−)
νµ Rate, energy CC

(−)
νe,

(−)
νµ dis. Rate, energy CC, NC

Future reactor measurements
(Nucifer, Stereo, Solid) Reactor ν̄e dis. Rate, length CC
Future source experiments
(Borexino, Ce-LAND, Daya Bay) β− Source ν̄e dis. Rate, length CC
(Borexino, SNO+Cr) EC Source νe dis. Rate, length ES
(LENS, Baksan) EC Source νe dis. Rate, length CC
(RICOCHET) EC Source νe dis. Rate, length NC
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trinos exist, should result in an oscillation length for ∆m2 ∼ 1 eV2 comparable to the

detector size. Various different isotopes are being considered. The main experimental

complication is that hot radioactive sources have short half-lives and that radioactive

source presents radiological concerns.

The radioactive source concept is similar to those using nuclear reactors to search for

electron disappearance (e.g., Nucifer, Solid). These ideas require small research reactors

that emit ν̄e, such as at the Institut Laue-Langevin (ILL) in Grenoble, and baselines less

than 10 m. Backgrounds are reduced by using coincidences between e+ and n from

inverse β decay—much like LSND. These experiments are on the surface to be near

the reactor core, which increases the cosmic ray background rate; therefore, ideally,

a submerged nuclear submarine on a six month deployment would be used instead

of the ILL, but this presents other issues. Most importantly, these reactor experiments

provide a cheap means for confirming or refuting the reactor neutrino anomaly—cheap

experiments help optimize baselines for expensive ones.

Planck is a next-generation cosmic microwave background (CMB) satellite that aims

to improve upon WMAP and KOBE’s measurements of the CMB. It also helps determine

the number of effective neutrinos Neff that contribute to the formation of the Universe. A

light sterile neutrino may have thermalized and affected the formation of the Universe;

however, the observation of Neff greater than ∼3 would not exclusively mean the exis-

tence of a sterile neutrino since other new physics (e.g., axions) could have been the

cause. The prediction of Neff without sterile neutrinos from big bang nucleosynthesis is

3.046 due to various corrections that need be applied (See, e.g., [39] and references

therein).

At the time of writing this thesis, the Planck satellite space mission [39] released its

first major result that confirmed, from a particle physicist’s perspective, that the Universe

is exactly like we expected. Although the Planck collaboration should be congratulated

on having performed exceptional science, the results are nevertheless disappointing
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since they do not provide any anomalies that could lead to new physics. Specifically,

their sterile neutrino result measured Neff = 3.30 ± 0.27 [40]. Without introducing

large primordial neutrino asymmetries, these results are hard—but not impossible—to

reconcile with terrestrial sterile neutrino experiments [41]. Nevertheless, a 10 eV2 sterile

neutrino is still consistent—albeit with tension—with both short-baseline experiments

and cosmology [42]. Cosmological experiments fit the CMB using the physics models

developed terrestrially; therefore, if sterile neutrinos were shown to agree, then our

cosmological models would be updated accordingly—much like how the discovery of

neutrino mass changed the models.

2.3 Conclusions

Neutrino oscillations are firmly established. However, numerous anomalies challenge

the standard 3ν oscillation framework. Experiments will continue to be performed to

elucidate these effects, but no funded experiment will conclusively confirm or reject the

sterile neutrino hypothesis. Conventional beams have been unable to confirm the effect

at >5σ. A new experiment is needed that can measure appearance and disappearance

signals.
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Chapter 3

Designing a new sterile neutrino

experiment

If you see a snake, just kill it—don’t

appoint a committee on snakes.

Ross Perot

This chapter shows the arguments that were used to design the VLENF (now νSTORM)

in the summer and fall of 2011, and was the initial and original sterile neutrino work for

νSTORM. At this point, nobody else had worked or was working on the sterile neutrino

reach of this type of facility since VLENF/νSTORM was originally conceived for cross-section

measurements. After this work, it became clear that there was a strong sterile neutrino case.

This chapter pedagogically discusses the design of the proposed experiment. The arguments

are illustrative and are estimates that need further confirmation. The chapters following

this one expand arguments, confirm assumptions, and give well-defined descriptions.

A new experiment is needed to determine whether or not sterile neutrinos exist.

What would be the best experiment to build? And what are the requirements? Firstly,

the experiment must be decisive and model independent: the LSND ν̄µ → ν̄e channel

should be directly studied at L/E ∼ km/GeV with a sensitivity of at least 5σ. Further-

44



more, studying several oscillation channels in the same detector is advantageous. These

requirements limit the experimental possibilities.

Any new experiment needs—obviously—neutrinos. Physical processes that produce

neutrinos include nuclear, π, and µ decay. However, each neutrino source has unique

experimental difficulties.

Nuclear β decays (i.e., the process u → d + e+ + ν̄e) have been extensively used

throughout the history of neutrino physics, whether occurring in solar fusion or nuclear

reactors. For example, reactors allowed the discovery of neutrinos, precision measure-

ments of ∆m2
21, and the measurement of the mixing angle θ13. However, β-decay pro-

cesses are only useful for disappearance measurements. The appearance of the second

lightest lepton—the muon—requires energies greater than mµ =106 MeV; however, the

Q value of β decay is around 1 MeV. It has been proposed to accelerate radioactive nuclei

so that the electron neutrinos have energies above the muon production threshold—the

so-called β beam concept—but this poses significant technical difficulties. Studying elec-

tron disappearance is crucial for studying sterile neutrinos, but β decay does not allow

for directly testing the LSND signal.

The LSND signal ν̄µ → ν̄e can be studied using the process π+ → µ+ + νµ, where

the LSND collaboration used a stopped-π beam and the MiniBooNE collaboration used

conventional beams with a π-decay pipe. A tremendous amount of experience using

these beams has been accumulated. Unfortunately, appearance measurements are also

difficult—not impossible—with π beams, but for different reasons than nuclear-decay

beams. Pions are produced when protons collide with a fixed target, and this production

depends upon the quark and gluon content within the nuclear target. Hadronic models

have large uncertainties that translate into π± and K± production uncertainties, where

background ν̄µ and
(−)
νe are produced at the level of ≈1%. Typically, a near detector is

built to provide an external constraint on the product of the flux and cross section φ×σ,

and also measure, e.g., the single-π-production background. This σ is actually the cross
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section for muon-neutrino interactions, σνµ . However, knowledge of σνe
is required

for these appearance measurements, and the cross-section ratio νe/νµ has theoretical

uncertainties and no experimental measurements. Also, the short 7-m decay length of

the pion makes it difficult to measure and manipulate the pion beam.

In contrast, a µ+ → e+ + νe + ν̄µ decay beam has smaller uncertainties and can be

used to measure σνe
/σνµ . The decay length of a muon is 600 m; therefore, the beam is

long lived, and can be stored in a ring and measured. For conventional pion beams, the

complication is the uncertainty in the target production, and—due to the short lifetime—

the beam cannot be precisely measured before it decays. With muons stored in a ring, the

same production uncertainties exist because the muons result from π decay; however,

the long lifetime allows for precise measurements of the muon beam using conventional

beam instrumentation.

Muons will be used for this proposed experiment, which is called the neutrinos from

stored muons (νSTORM)1 experiment. Nuclear and π decays produce only one neutrino

flavor; yetµ decay produces both electron and muon neutrinos. All
(−)
νe/µ↔

(−)
νe/µ channels

are experimentally accessible at νSTORM (Table 3.1). Therefore, many channels can

be studied in one experiment, which helps reduce the systematic uncertainties. In a

µ+ decay, ν̄µ and νe are produced and, if there are no oscillations, only a µ+ can be

produced by neutrino interactions—the so-called “right-sign” disappearance channel

ν̄µ→ ν̄µ. However, if there are oscillations, then a µ− (i.e., “wrong-sign” muon) can be

produced by νe→ νµ oscillations. Therefore, if the experiment is viewed as a black box,

then a nonzero appearance probability converts a µ+ into a µ−, creating this “wrong-sign”

muon (i.e., µ+→ νe  νµ→ µ−). Just to be clear: charge is still conserved because the

positron and other neutrino were ignored.

There is, nevertheless, a downside: the appearance signals require a high degree

of lepton charge discrimination. For example, if µ+ are stored, the oscillation νe → νµ
1Joachim Kopp invented this clever name.
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Table 3.1: Table of possible oscillation channels from muon decay rings. All oscillation
channels below the τ threshold are present. Channels are either called “right sign,” if
the detected neutrino is produced in muon decay, or “wrong sign.”

Parent decay Oscillation channel Final-state lepton Colloquialism

µ+→ e+ + νe + ν̄µ

ν̄µ→ ν̄µ µ+ right-sign
νe→ νµ µ− wrong-sign
νe→ νe e− right-sign
ν̄µ→ ν̄e e+ wrong-sign

µ−→ e− + ν̄e + νµ

νµ→ νµ µ− right-sign
ν̄e→ ν̄µ µ+ wrong-sign
ν̄e→ ν̄e e+ right-sign
νµ→ νe e− wrong-sign

occurs concurrently with ν̄µ→ ν̄µ, which produce µ− and µ+, respectively. These muons

must be differentiated.

The required level of discrimination can be estimated. The number of events is

N = ε× [σnucleon × NA×mdet.]× Peµ ×Φ, (3.1)

where ε is the efficiency, σnucleon is the appropriately-defined neutrino–nucleon cross

section for an isoscalar target, NA is Avagadro’s constant 6.02× 1023, mdet. is the target

mass in grams, Peµ is an oscillation probability from an electron flavor state to a muon

flavor state, and Φ is the flux. Until more of the facility has been designed later in

this thesis, it is not possible to make proper statistical arguments about the required

detector performance since the interaction rates are unknown. However, the following

pedagogical relation

Nsig.

Nbkg.
=
εsig. ×σsig. × Peµ ×Φsig.

εbkg. ×σbkg. × Pµµ ×Φbkg.
∼ 1 (3.2)

can be used for the moment. The neutrino cross-section ratio σsig./σbkg., flux ratio

φsig./φbkg., and disappearance probability are all approximately 1. Rearranging Eq. (3.2)
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results in

Peµ =
εbkg.

εsig.
. (3.3)

The appearance probability is O
�

10−3
�

. If the detector is only—conservatively—10%

efficient at detecting muons, then the background rejection must be O
�

10−4
�

.

The only way to determine a particle’s charge at this level is to magnetize the detector.

Only muons are considered because it is difficult to determine an electron’s charge due

to its short interaction length. This would be worrying given that LSND’s signal was

electron appearance if it were not for the conservation of CPT. It is true that ν̄µ → ν̄e

cannot be easily explored using muon-decay beams; nevertheless, the CPT-equivalent

channel νe→ νµ can be explored. (If CPT does not hold, then QFT is wrong and it is a

bigger discovery than sterile neutrinos.) There are advantages to this channel: neutrino

cross sections are larger than the antineutrino cross sections and muons are easier to

detect than electrons.

The two design requirements are that the detector must identify muons and be mag-

netized. Identifying muons from NC events is best done using range—muons go farther

than, for example, pions—because reconstructing interaction kinematics or looking for

decay “kinks” is challenging. The complication with using range is that magnetizing the

large volumes, which is required to stop the muon, is expensive (large volumes are also

required to increase the detector target mass).

Ideally, the detector would be totally active and inside of a large magnet. Super-

conducting magnets provide more field than conventional magnets, therefore would be

advantageous and are used for νSTORM. However, producing magnetic fields over large

volumes is difficult if the detector is not ferromagnetic. For example, a totally active

scintillator detectors could work, but a conventional superconducting magnet would

cost2 ≈40 million dollars. Less conventional magnets such as superconducting trans-

2A model of superconducting magnet costs was developed in 1993 [43], C = 0.4(BV )0.635, where C is
in millions of US dollars (USDs), B is in Tesla, and V is in m3.
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B

Figure 3.1: Diagram of a magnetized iron sampling calorimeter. Scintillator planes are
green and iron planes are gray. The solid line is a conducting cable, where the arrow
indicates the direction of the flowing current. The dashed line indicates the toroidal
magnetic field lines.

mission lines (STLs)—which are just superconducting cables—introduce technical risk

since they were not designed to be wrapped. The radius of curvature for the STL from

very-large hadron collider (VLHC) R&D is 15 m, and opinions differ as to how difficult

it would be to adapt it to, for example, a 5-m totally-active scintillator detector (TASD).

Another alternative is to use a magnetized-iron sampling calorimeter, much like

MINOS (Fig. 3.1). This technology is well proven for neutrino detection and has a long

history [33,44]. Iron and plastic scintillator planes are stacked (iron, plastic, iron, plastic,

and so on), where the planes are assumed to have equal thickness. A current carrying

cable passes through a hole in the center. The current magnetizes the ferromagnetic

iron and, in the case of a STL, saturates the iron at 2 T with a toroidal field—compared

to 1.16 T in the middle of the MINOS near detector target volume [45] using a normal-

conducting magnet.

Current in a conductor passing through the detector center produces a toroidal field

in the iron. To obtain the maximum field in the iron—which is advantageous for charge
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Figure 3.2: Sketch of how the detector rejects backgrounds. The solid line is the conduct-
ing cable, where the arrow indicates the direction of current flow. The blue line in the
middle is a µ− that is focused towards the conducting cable. The red is a “wrong-sign”
muon (i.e., µ+) that is defocused. The short black lines below the superconducting cable
is a NC event that does not penetrate much steel.

identification—a superconducting cable must be used. A suitable cable was developed for

the VLHC: the STL. It can carry a maximum current of 100 kA; however, higher currents

can be achieved by having multiple conductors. A current of 250 kA will saturate the

iron (B =2T) up to a radius of 2.5 m.

As mentioned before, the two design constraints for the detector are that it must

differentiate muons and non-muon events, and that it must be magnetized. Simple

arguments can be used to demonstrate the performance of a magnetized-iron sampling

calorimeter

Separating NC and νe CC events from νµ CC events is straightforward: muons will

penetrate more steel than electrons or hadrons. Requiring that particles go through 2 m

of steel will reject most NC and νe CC backgrounds. The hadronic interaction length in

steel is X Int.
0 = 20 cm, so 2 m corresponds to ten interaction lengths. The probability that

a pion is able to travel farther than 2 m without interacting is then at most e−10 = 4×10−5.

The radiation length in steel is much shorter (X Rad.
0 = 1.75 cm); therefore, νe CC can be
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ignored. The background levels from NC and νe CC satisfy the requirement of Eq. (3.3).

Demonstrating that µ+ and µ− can be separated requires a small derivation. The

muons must be bent in a magnetic field to determine the charge. However, multiple

scattering (MS) can appear to bend the muon the “wrong way”. Achieving the requisite

level of background rejection requires the bending due to the magnetic field to exceed

the apparent bending due to MS.

If the steel is saturated, how far must a muon travel for the charge to be known at the

required level? Both bending and MS can be represented as momentum kicks transverse

to the direction of the muon, where the momentum kick from bending should exceed

that of multiple scattering. The momentum kick for bending in a magnetic field is

pB
⊥ [MeV/c]= 300Bx [Tesla meters], (3.4)

where B is the magnetic field and x is the distance traveled [46]. The competing MS

momentum is pMS
⊥ and is defined in terms of the RMS angular spread σθ from MS. For

high-Z material such as steel,

σθ =
13.6 MeV
β cp

Æ

x/X0, (3.5)

where p, β c, and x/X0 are, respectively, the momentum, velocity, and the distance in

units of radiation length [2]. The X0 for the composite material can be found by taking

the weighted-average of the reciprocals,

100%

X composite
0

=
50%

X iron
0

+
50%

X scintillator
0

, (3.6)

where X composite
0 is found to be 3.38 cm (Table 3.2), and the 50% comes from half the

thickness of a layer being either iron or scintillator. Using the small-angle approximation
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Table 3.2: Detector parameters including radiation lengths.

Region Parameter Value

Iron

X0 1.76 cm
Density 7.874 g cm−3

Magnetic field 2 T

Scintillator (Polystyrene [C6H5CHCH2]n)

X0 43 cm
Density 1.06 g cm−3

Magnetic field 0

Effective

X0 3.38 cm
Density 4.467 g cm−3

Magnetic field 1 T

it is possible to find pMS
⊥ :

pMS
⊥ =

13.6 MeV
β

Æ

x/X0. (3.7)

The ratio r of p⊥ kicks determines the importance of scattering vs magnetic bending:

r =
pB
⊥

pMS
⊥

=
300Bx × β
13.6

p

x/X0

(3.8)

' 22B
p

x
p

X0β . (3.9)

=⇒ x =
r2

484B2X0β2
(3.10)

The ratio r must exceed 4.3, which corresponds to a probability of 10−5 if the distribution

is Gaussian. From Table 3.2, for the composite material X0 = 3.38 cm, B = 1 T, and

β ∼ 1; therefore, the muon must penetrate at least 1 m. The range requirement for

rejecting NC events provides more than enough bending to separate muon polarities.

Imposing a cut that requires a muon to penetrate 4 m of detector (i.e., 2 m of

steel) will limit the neutrino energies where this detector technology is useful, which

determines the required accelerator energy. The relationship between muon momentum

and range can be determined by using the continually-slowing-down approximation
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(CSDA). For a muon with kinetic energy T , the integral for the range R is

R=

∫ T

T0

〈dE/d x〉−1 dE, (3.11)

where the mean stopping power 〈dE/d x〉 arises from ionization loss and is given by the

Bethe-Bloch expression:

〈dE/d x〉=
4π

mec2

nz2

β2

�

e2

4πε0

�2 �

ln

�

2mec
2β2

I(1− β2)

�

− β2 −
δ

2

�

, (3.12)

where β = v/c, z is the particle’s charge, e is the electron charge, me is the electron mass,

n is the electron density, I is the mean excitation energy, ε0 is the vacuum permittivity,

and δ is a density correction [2]. The computation in [2] of 〈dE/d x〉 for iron and

scintillator is used when computing the range in the composite material. The effect of

radiative corrections and multiple scattering is ignored. Integrating R for the composite

material, T0 must be greater than 3 GeV for the muon to penetrate 2 m of steel.

The energy threshold of the detector requires that the neutrinos from the accelerator

be above 3 GeV. The neutrino spectrum from muon decay is continuous—it’s a wide-

band beam. Ideally, the accelerator muon energy would be higher than the detector

energy threshold; however, this is expensive and it is useful to know how well the 4

GeV muons perform. A 4 GeV muon will result—roughly—in a quarter of the neutrinos

having energies above 3 GeV; therefore, the assumed signal efficiency is 10% (p.p. 48).

For many reasons, higher stored-muon energies are better than lower ones: cross

sections, detector efficiency, and beam collimation. However, the beam energy cannot

be increased indefinitely. The muons are a tertiary beam; therefore, the pion and proton

energies must be high enough to create high-energy muons. The relation between proton
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Figure 3.3: Sanford-Wang parameterization for π production using 60 GeV protons for
a thin target.

and pion energies is given by the Sanford-Wang parameterization for a thin target,

d2σ(p+ A→ π+ + X )
dpdΩ

(p,θ ) =

c1pc2

�

1−
p

pbeam

�

exp

�

−c3
pc4

pc5
beam

− c6θ (p− c7pbeam(cosθ )c8)

�

, (3.13)

where p is the pion momentum, Ω is solid angle, pbeam is the beam momentum, and

the rest (i.e., c1, c2, ..., c8) correspond to fit parameters given in Table 3.3 [47]. The

highest energy proton machine that could deliver enough protons for a new neutrino

experiment is the Fermilab main injector (MI), which can have a proton energy of 60

GeV; however, it typically runs at 120 GeV. Pion production is maximal at approximately

10% of the proton energy, which means that peak pion production occurs at 5–6 GeV.

These pions will decay lower energy muons; therefore, the muon energy is assumed to

be 3.8 GeV.

The baseline can be estimated, assuming this muon energy. The oscillation probability
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Table 3.3: Sanford-Wang parameterization for Be targets.

c1 c2 c3 c4 c5 c6 c7 c8

196 1.08 2.15 2.31 1.98 5.73 0.137 24.1

is

Prob[νe→ νµ]∼ sin2
�

L
4〈Eν〉

∆m2
�

, (3.14)

where L is the baseline, E is the neutrino energy, and ∆m2 is the neutrino parameter.

The guesstimate L is then

L
4〈Eν〉

∆m2 =
π

2
(3.15)

L =
4〈Eν〉π
2∆m2

(3.16)

=
4〈Eν〉π
2∆m2

(3.17)

= 7.6× 1018 GeV−1 (3.18)

= 2.3 km (3.19)

where 〈Eν〉= 2 GeV and the last step used the relation, in natural units,ħhc = 197 MeV fm.

A more sophisticated baseline optimization will be performed in later sections. In the

meantime, even though the energy threshold of the detector is 3 GeV, choosing 〈Eν〉=

2 GeV helps optimize the disappearance searches. The disappearance signal is larger,

and energy cuts can be relaxed for this analysis. Solid angle effects have also been

ignored, but are included later.

The final parameter to determine is how many neutrino interactions are required,

which depends upon the number of stored muons and also the target mass. Recalling

Eq. (3.1) on p.p. 47, the number of interactions can be written as

N = ε× [σnucleon × NA×mdet.]× Peµ ×Φ, (3.20)

55



Figure 3.4: Feynman cartoon of muon decay. Specifically, the decay µ+→ ν̄µνee
+.

whereσnucleon is the appropriately-defined neutrino–nucleon cross section for an isoscalar

target, NA is Avagadro’s constant 6.02× 1023, and mdet. is the target mass in grams. As-

suming a 1.5 kt detector could be built, what flux φ is needed?

The neutrino flux arises from the electroweak decay µ+ → ν̄µνee
+ (see Feynman

cartoon in Fig. 3.4). The electron-neutrino spectrum is

dnνe

d x dΩ
=

1
4π

�

12x2(1− x)
�

(1+P cosθ ), (3.21)

where x = 2Ec.o.m.
ν

/mµ ∈ [0,1] and Ω are the scaled neutrino energy and solid angle

in the muon rest frame, P is the polarization, and θ is the neutrino angle. (See, for

example, Chap. 6 of [48] for a derivation.) Electron and neutrino masses are negligible

for this process and can be ignored, hence the inclusive range for values of x . Polarization

P is ignored due to the incoherent Thomas precessions of the beam (studied later in

Sec. 6.1.1).

The boosted electron-neutrino double-differential flux at distance L in the laboratory
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Figure 3.5: The flux of νe and ν̄µ for a 3.8-GeV/c muon decay without oscillations at
2000 m. No smearing due to accelerator effects has been performed.

frame is

d2Nνe

d y dA
=

24nµ
πL2m6

µ

E4
µ

y2(1− β cosφ)
�

m2
µ
− 2E2

µ
y(1− β cosφ)

�

, (3.22)

where y = Eν/Eµ is the scaled neutrino energy in the laboratory frame,β =
q

1−m2
µ
/E2
µ
,

A is an area, nµ is the number of muons, and φ is the angle between the muon and neu-

trino. This distribution (Fig. 3.5) is for a point source, which is a suitable approximation

if the baseline is longer than the accelerator.

Integrating the flux over energy, assuming that φ is small, and that the cross section

σ = 0.67× 10−42 m2/E GeV yields the event rate Ne = 1.4× 10−13 × nµ. As mentioned

before, the goal is to have a 5σ measurement and the oscillation probability is 10−4.

Roughly, 25 events are required to have a 5σ sensitivity (i.e., 25/
p

25= 5). Given the

10% efficiency, 250 interactions are required. The number of muons can be determined:

nµ =
10%× 250

1.4× 10−13 × 10−4
= 1.8× 1018. (3.23)
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Figure 3.6: A diagram of the proposed νSTORM experiment and detector. Protons are
collided onto a fixed target. The resulting pions are then collected and injected into the
decay ring where they decay. The muons circulate before decaying to neutrinos that
travel toward the near and far detectors.

Based on the estimates in [49] of the muon per proton on target ratio, obtaining this nµ

would require 1021 protons on target.

A summary of the experimental parameters is in Table 3.4, and these parameters

are the baseline for the proposed νSTORM experiment (Fig. 3.6). The remainder of this

thesis further discusses, motivates, and defends the parameters discussed above. How

νSTORM could be built is explained in the next chapter. The detector performance is

further motivated in Chap. 5, before the physics reach is discussed.
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Table 3.4: νSTORM parameters.

Stored muon energy 3.8 GeV
Number of stored muons nµ 1.8× 1018

protons on target (POT) 1021

Baseline 2 km
Detector mass 1.5 kt

Efficiency 10%
Oscillation probability 10−3

Background rejection level 10−4

Magnetic field Toroidal at 2 T
Muon range cut 2 m
Energy threshold 3 GeV
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Chapter 4

νSTORM accelerator and detector

technical designs

If an idea’s worth having once, it’s

worth having twice.

Tom Stoppard

A large fraction of the work in this chapter were done by engineers and other physics.

Where specific, about half of the plots in the chapter were created by myself.

In this chapter, a brief history of neutrino beams is discussed followed by a description

of how νSTORM could be built. The historical background is intended to give context and

show that muon-decay beams are—and have been—feasible for decades. By describing

the facility in more depth than the previous chapter, the claim of little new R&D being

needed is strengthened further. (More information is available in the letter of intent

(LOI) that was submitted to Fermilab [50].)
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4.1 Muon-decay neutrino beam review

Neutrino beams have led to a wide range of discoveries, despite not changing much since

their initial conception. The pion-decay
(−)
νµ beam was invented in 1961 by Steinberger et

al. [51], and resulted in the discovery of the muon neutrino. It is also the only reasonable

method for creating a “pure” νµ beam because pions mainly decay to muon neutrinos,

with backgrounds from other decay channels and produced particles at the percent level.

These backgrounds arise from muons decaying despite the decay pipe being short, and

from the suppressed decay of pions and kaons to electrons. Every accelerator neutrino

beam has been made in a similar way, with only slight variations (e.g., focusing horns,

or having the muon decay at rest).

However, 13 years after the invention of pion-decay beams (i.e., 1974), neutrino

beams from particles other than pions were first being considered [52]. Muons are an

ideal candidate because they are unstable, charged, and relatively long lived. Neutrino

oscillations were not yet established; however, various accelerators and detectors were

being designed to investigate the possibility of oscillations. For example, Neuffer pro-

posed using a 4-GeV/c muon-decay ring to probe neutrino oscillations at the electronvolt

scale [49]. However, his idea was not well received within the neutrino community and

was promptly forgotten; particle physicists prefer to solve problems by developing new

detector technologies, while accelerator physicists prefer building accelerators. Luckily,

30 years later when there was an independent resurgence of interest in probing elec-

tronvolt scale neutrinos using muon-decay beams, he was able to reveal that he had

done much of the initial accelerator work. His original concept was the starting point

for the accelerator design described in this thesis—specifically, his injection technique.

Muon storage rings have never been used for neutrino oscillation physics; however,

muons have been stored in accelerators for precision quantum electrodynamics (QED)

studies. The first muons were stored in an accelerator in 1961 [53] to test the developing

theory of QED. One of the predictions of QED is that the gyromagnetic ratio g is not
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exactly 2 due to loop corrections, therefore there is an anomalous magnetic moment

a = (g − 2)/2. Shortly after parity violation was discovered (1956), it was realized

that muons from pion decay were polarized and that a nonzero g−2 would result in

a measurable spin precession as the muons circulated in a ring. The E821 experiment

at Brookhaven National Lab (BNL) was able to measure this effect and claims that

a = (11659208.9± 5.4 (stat)± 3.3 (sys))× 10−10, which agrees with theoretical calcu-

lations [2]. However these beams are not good for neutrino physics due to poor neutrino

intensity; the design requirements of small energy spreads and uniform magnetic fields

results in an accelerator that is not ideal for neutrino physics.

Therefore, in the 1980s, little had been demonstrated about muon acceleration for

neutrino physics. The beam concept stagnated until the modern idea in the 1990s of

the neutrino factory (NF) by Geer [54], where beam cooling and fixed-field alternating

gradient (FFAG) accelerators were considered to increase neutrino brilliance in various

NF designs. These NFs were designed to perform the difficult measurements of the

unknown neutrino parameters: θ13 and δCP (recall Sec. 2.1.4). Even though muon-

decay beams can be applied to many different neutrino problems, most NF designs are

ambitious and expensive (e.g., 5.3–7.3 billion EUR [55]).

However, cheaper muon-decay beams are possible. Cooling and FFAGs, which con-

stitute a large fraction of the NF accelerator cost, are not required for, e.g., cross-section

physics. More recently, Rubbia et al. have independently considered neutrino exper-

iments using muon-decay rings to perform cross-section measurements in a similar

energy range [56] to what is proposed in this thesis. The νSTORM idea, which was

previously called the very-low-energy neutrino factory (VLENF), was also originally

conceived for cross section measurements, before this work. The recent focus of muon

acceleration programs toward R&D for next-generation beams—or the even more com-

plex Higgs factory—has skipped the intermediate step of a facility like νSTORM, which

is more complex than muon rings for QED studies but less complex than a NF.
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Figure 4.1: High-energy high-luminosity neutrino factory with 1021 stored muons with a
25–50 GeV momentum. Two options are shown for the proton driver: a linear accelerator
and a synchrotron. Whichever is used would collide protons with a target, where the
emerging muons are manipulated in the buncher, phase rotation, and cooling stages.
After cooling, the muons are accelerated to 12.6 GeV in a series of linear accelerators
(that include a recirculating linear accelerator). Afterward, an FFAG is used to accelerate
the muons to 25 GeV. At this point, the beam can be extracted into decay rings such that
neutrinos will be directed at detectors. [57]
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R&D from the design of high-energy high-luminosity NFs (25–50 GeV, 1021 stored

muons, Fig. 4.1) can nevertheless be applied to νSTORM (3.8 GeV, 1018 muons) [57].

For example, the detectors and beam instrumentation are the same. Efforts toward

the construction of NF prototypes relating to cooling magnets and RF cavities (MICE,

MUCOOL), acceleration (EMMA), and detector technology (AIDA) are underway. No

construction R&D effort, however, has been undertaken to demonstrate the effectiveness

of muon-decay beams for neutrino physics. νSTORM can be viewed as a neutrino-factory

test facility where beam instrumentation can be tested and detector analyses prototyped.

This νSTORM test-beam facility can be the initial stage of a long-term, staged physics

program using muon-decay beams. For example, νSTORM could aid next-generation

long-baseline experiments and perform sterile neutrino measurements while fitting on

either FNAL’s or CERN’s site. The next stage would be a facility with sensitivity to >80%

of the possible values for the neutrino CP-violating phase, where this CP phase is a

benchmark for sensitivity to new physics. There is also merit in overconstraining the

PMNS matrix to help model builders. Later stages could include muon colliders at either

the Higg’s resonance or any new energy scale of interest indicated by LHC experiments.

All of these stages would be aided by the successful demonstration of using muon-decay

beams for neutrino physics. Muon-accelerator R&D provides the only logically staged

program where the benefits of each stage advance accelerator, neutrino, and collider

physics.

4.2 νSTORM Accelerator

νSTORM is the simplest possible conception of a “neutrino factory.” It consists only of

a target and a decay ring: if the target is removed, then there is no beam, and if the

decay ring is removed, then it is a conventional pion-decay beam. A technically feasible

accelerator design is elaborated in this section. Optimizations of the accelerator complex
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are ongoing, and various designs exist for different components that result in similar

accelerator performance.

The facility has three high-level components: the accelerator, near detector, and far

detector. This accelerator consists of six major components

1. existing proton facility up to 60 GeV/c,

2. extraction from a proton storage ring,

3. a proton target station,

4. pion collection and transport,

5. injection into a muon decay ring, and

6. a muon decay ring.

The accelerator accounts for the majority cost and effort for this experiment—the ac-

celerator physicists work hard so the particle physicists do not have to. The near and

far detectors are placed at their requisite distances to receive “useful” neutrinos, where

“useful” is defined later. For simplicity, only the Fermilab site will be discussed despite a

CERN design existing [58]. Lastly, the term “accelerator” could be more accurately re-

placed with “beam line” because no RF cavities are used (i.e., no acceleration); however,

by convention this machine is still called an accelerator.

A figure of merit that takes into account the performance of each accelerator com-

ponent is developed to allow for an overall optimization.The accelerator performance

metric is the number of muons Nµ that decay toward the detectors, which can be repre-

sented by the performance of each component of the accelerator as follows

Nµ = (POT)× (π per POT)× εcollection × εtransport

×εinjection × (µ per π)× Adynamic ×Ω, (4.1)
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where (POT) is the number of protons on target (POT), (π per POT) is the pion multi-

plicity per proton, εcollection is the collection efficiency, εtransport is the transport efficiency,

εinjection is the injection efficiency, (µ per π) is the chance that an injected pion results in

a muon within the acceptance, Adynamic is the probability that a muon within the physical

aperture is within the dynamic aperture, and Ω is the fraction of the ring that aims

muons at the far detector. The values of these parameters are derived in this chapter.

4.2.1 Host ring and extraction

The proton energy is an important parameter for νSTORM. For instance, the proton

energy creates an upper limit on Eν; neutrino interaction rates scale as E3
ν

(E from cross

sections, and E2 from decay kinematics 1/γ), and detector efficiencies scale roughly as

Eν. However, the proton energy—and accordingly, pion and muon energies—cannot be

raised indefinitely. Specifically, a limitation arises from using synchrotron rings to store

protons and the limited gradients of RF cavities in the proton front end. The beam takes

time to accelerate, yet dipole magnets only transport one beam momentum. Therefore,

new beam from the initial proton source cannot be injected until the previous beam has

finished accelerating and extracting.

νSTORM is designed to be parasitic off a proton ring, and the Fermilab MI (Fig. 4.2)

has been chosen as the host ring. It is the highest energy accelerator (8–150 GeV/c)

operating at Fermilab, but also provides a reasonable proton current as it serves other

experiments. The MI operates at 120 GeV/c for the MINOS, NOνA, and MINERνA neu-

trino experiments, but it is possible to extract at 60 GeV/c. For a fixed pion energy,

increasing the extracted proton energy increases the pion multiplicity dNπ/dEπ (See,

e.g., the Sanford-Wang formalism in [59]). By not cooling or accelerating the beam of

muons, the method employed to increase the neutrino flux is to increase the proton

energy. Proton energy cannot be increased indefinitely, since it is linearly proportional

to beam power, and proton targetry above 400 kW is expensive due to potential radi-
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Figure 4.2: A possible νSTORM siting on the Fermilab site using the MI.

ological concerns. The proton energy is already higher than is typically considered in

NF designs, which use 6–8 GeV protons—but those “cool” and accelerate muons. This

entails taking a low-momentum range of the beam, reducing its emittance so it can be

accelerated, then accelerating the beam up to some higher energy.

As an aside, the proton requirements for this machine are compatible with allocations

to future experiments. The proton improvement plan will have been completed at FNAL

(700 kW at 120 GeV/c), and NOνA will have finished taking data by the time νSTORM

is ready to take data. The main beam users will be the muon experiments Mu2e and g-2,

which have proton limitations to avoid pileup. LBNE should occur later than nuSTORM.

Extraction may be performed in either of two ways: either an extraction of two MI

bunches or extracting the entire MI once every seven fills. Quick extraction would use

a fast kicker and start in empty buckets since only 12 of the 15 MI buckets are full.

Extracting the entire MI complicates injection because the circumference of the MI is

larger than the decay rings being considered. It is important to note that the beam

current is higher if the entire MI is extracted, which is preferable for the decay-ring

beam instrumentation.

67



The MI can deliver up to 700 kW, but a modest 100-kW target station is assumed to

allow for the operation of other experiments—though the target hall will have enough

concrete for 400 kW to allow upgradability. Good sterile neutrino sensitivity requires

1021 POT [motivated from Eq. (3.23)]. Power is defined as P = N E, where P is the

power, N is the number of particles per second, and E = 60 GeV is the energy of the

beam. Accordingly, the target station could receive N = 1013 protons per second on

average and, assuming a 2 × 107 s operational year, will result in 2 × 1020 POT per

year. After five calendar years νSTORM should deliver its design sensitivity to sterile

neutrinos.

The number of protons per second is reasonable in the FNAL proton improvement

plan (PIP) era. The booster’s linac delivers 4×1012 protons per pulse and the repetition

rate is 15 Hz [60]. There are 1.2×1021 protons per calendar year at 8 GeV/c, which is an

upper limit for the number of usable protons, since other accelerators are downstream.

For the 60-GeV/c MI, only 80% of the protons that are in the booster can be accelerated

to 60 GeV/c, yielding 5× 1013 protons per second at 60 GeV/c.

4.2.2 Targeting

Targeting entails impeding a proton beam onto a stationary target in order to generate

pions. A 100-kW target station for 60-GeV/c protons using a 21-cm tantalum target

is considered at present (Fig. 4.3). Histograms of the number of pions in the window

5 GeV ± 10% for various materials (e.g., diamond, Be, Au) of different lengths was

provided by Striganov [61] using M A R S, and various observations made. The pion yields

of these targets are comparable: the target designs agree within the 30% uncertainty

within M A R S at these energies [62]. Accordingly, the target can be chosen by considering

engineering constraints such as heat loads, mechanical stresses, and other engineering

constraints, which will most likely result in a preference for a low-Z target.

There is an energy mismatch between the incident proton energy and the collected
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Figure 4.4: Proton 60 GeV, 70-cm Be target, 1-cm radius, θ < 120 mrad, M A R S [61].
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Figure 4.5: Pion production integrated over dynamic aperture.

pion energy. Pion production will increase monotonically with proton energy. Accord-

ingly, the 60-GeV MI is favored to the 8-GeV booster to allow for more pions in 5 GeV±

10%. The pion multiplicity within 120 mrad and the energy acceptance is shown in

Fig. 4.4.

The momentum acceptance of the collection and transport channel is ±10% by de-

sign, and this relative acceptance results in
∫

pπ±10%
(dNπ/dpπ) dp being constant for

different momenta as shown by Fig. 4.5. This result is due to the approximate cancel-

lation of two effects as the pion collection momentum increases: the pion production

decreases (Fig. 4.4) while the absolute acceptance increases. The function dNπ/dpπ,

where p is the pion momentum, is the pion multiplicity within an energy range. Pi-

ons with a momentum spread of 10% will be collected from the target. Using linear
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interpolation and integrating dNπ/dpπ (i.e., Fig. 4.4), one finds

(π per POT) =

∫

p±10%

dNπ
dpπ

dp ' 0.09, (4.2)

where (π per POT). Note that the result is independent of the central pion momentum

from 3–6 GeV due to the ±10% momentum acceptance.

4.2.3 Collection and transport

The 4.5–5.0 GeV/c pions emerging from the target must be collected and then trans-

ported to the decay ring (the horn and quadrupole in Fig. 4.3). Various techniques were

considered (e.g., lithium lenses, solenoids, and horns); however, a horn much like the

one used by NuMI gives the desired performance.

Horns are a hollow coaxial structures of conductor through which large currents flow

to produce an azimuthal field. They were invented by Simon van der Meer to increase the

intensity of the Spp̄S accelerator. They have since been used by many accelerator-based

neutrino experiments and are a standard technology in collecting secondary beams. The

horn gives adequate optics into the collection channel and is the current favored option

for νSTORM.

For pions within 5±0.5 GeV and the desired phasespace, a conservative 10% loss of

pions during the collection phase is a reasonable estimate [50]; therefore, an efficiency

of 90% is used in subsequent calculations. These are pions that are within the design

acceptance since most pions (e.g., a 10 GeV pion) are lost. If the transport channel is

short enough (<100 m) such that muons do not decay, then the transport efficiency is

≈1.
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Figure 4.6: A cartoon showing the general principle of stochastic injection.Ó

4.2.4 Injection

Injection into the decay ring will be accomplished by stochastic injection. Stochastic in-

jection was the original concept envisioned by Neuffer and was conceived in the 1980s

when designing accelerators stochastically was in fashion [49,63]. For example, stochas-

tic cooling—also invented by Simon van der Meer—was employed at the Spp̄S to reduce

secondary p̄-beam emittance, providing R&D that led to future successful pp̄ colliders.

Stochastic processes allow for manipulating the beam emittance, despite Liouville’s the-

orem that states the phase space volume of a beam is a conserved quantity.

The circumference of the MI (3319 m) is longer than the decay rings being considered

(<500 m), which presents a problem for injection. Beams cannot be injected into the

phase space of a circulating beam, and a usual technique such as H− injection with

stripping foils does not work with muons. Kickers would disrupt the circulating beam.

Stochastic injection (Fig. 4.6 and 4.7) relies upon the injected particle species being

different from the circulating particle species. For νSTORM, pions could be injected into

the ring with the circulating muons by directing the pion beam toward the edge of a

quadrupole magnet, which creates a dipole field (Fig. 4.8). The pion and muon occupy

different phase space volumes, since they are spatially separated once injected, and also
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Figure 4.7: Stochastic injection, as understood by accelerator physicists. The beam is
dispersion matched (i.e., Dx = Dx ′ = 0 for both beams), where dispersion is roughly
dp/d x .

Figure 4.8: Quadrupole field. Note that a particle off-center will see a dipole field.
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Figure 4.9: A schematic of the decay ring. Pions are injected in the bottom left of the
figure and decay in the bottom straight. Muons from these decays circulate in the ring
to produce neutrinos.

have different momenta. Some of the muons from pion decay will be within the dynamic

aperture of the machine.

Injection can be designed to have pions decay toward or away from the far detector.

The favored option is to inject into the accelerator portion that results in pions decaying

such that neutrinos from this decay can be observed at the far detector—called the

pion-decay flash. These pion-decay neutrinos may provide interesting physics, do not

result in dead time (<1%) whereby pion-decay neutrinos interact at the same time as

muon-decay neutrinos, and only marginally complicate the far detector analysis.

Simulation work has been performed to demonstrate the efficiency of various in-

jection schemes [64,65]. Given these results, it is conservative to assume an injection

efficiency of 90%. Further optimizations are still ongoing.

4.2.5 Decay ring

A racetrack ring has two long, straight sections (Fig. 4.9). Circulating muons will decay,

producing neutrinos along both straights. One straight points toward the detector and is

called the decay straight. The key difference between a muon-decay straight and a pion-
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decay pipe—how accelerator neutrinos are normally made—is that muons which arrive

at the end of the straight without decaying are “recycled” instead of lost. Dipoles steer

the beam back to the beginning of the straight to allow the muons another possibility to

decay toward the detector. This is possible because muons (cτ= 658 m) are longer lived

than pions (cτ = 8 m). Recycling the beam is an efficient way to get bright neutrino

beams.

The accelerator optimization depends upon three different aspects of the design.

First, the number of circulating muons in the ring must be maximized. Due to pion

decay kinematics, the muon beam is larger than any reasonable ring dynamic aperture.

Therefore, more muons are accepted when the magnet apertures are increased. Once the

beam is within the dynamic aperture, it is transported until it decays because the beam

is too short lived to hit a resonance. Next, the ratio of the decay straight length to the

circumference determines how many muons decay toward the detectors; therefore, this

must be maximized. The final constraint is cost. To increase the statistics in a detector,

either the accelerator can be improved to deliver more muon decays or the detector can

be made more massive. However, if the facility will serve many experiments, then it is

better to spend money on the accelerator. Costing exercises are ongoing and are not

discussed further. (An optimization is presented in Appendix A.)

Designs exist for both a classic FODO (Fig. 4.10) and a scaling FFAG lattice, where a

FODO lattice uses mainly quadrupoles for vertical stability and dipoles in bends, while

a FFAG uses a more complicated field to ensure the same bending for many muon

momenta. The most interesting feature of the FODO design is the asymmetric β function,

which was an idea conceived for this thesis and implemented by Bogacz [66]. The benefit

is that magnet costs are minimized in the straight that does not aim beam at the detectors

(beam size σx ∼
p

β ∼ magnet size); however, the beam divergence, σx ′ ∼ 1/
p

β , is

also minimized. By having small divergence, the beam is aimed at the detector. Ideally,

the beam divergence should not affect the flux predictions. To accomplish this,σx ′ should
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Figure 4.10: The decay-ring lattice. The β functions are shown for a FODO, which
means uses focusing (F) and defocusing (D) quadrupoles, decay-ring design with small
beam size β (β =pσxε) in the straight that is not the decay straight [50,66].

be less than the “natural” divergence of the beam 1/γ arising from the decay kinematics.

The geometric emittance is 2 mm; therefore, β = 40 m results in σx ′ = 7 mrad, where

the divergence (i.e., opening angle) is 1/γ= 30 mrad for a 3-GeV muon.

The main distinction between the FODO and FFAG accelerators is their longitudinal

momentum acceptances: 10% and 16% for the FODO and FFAG, respectively. Maxi-

mizing the longitudinal acceptance is the main design consideration for increasing the

number of useful muons due to the broad energy spectrum of muons that could poten-

tially be transported.

Different lattice designs achieve large momentum acceptance in different ways.

FFAGs are intended for high-current machines that have bunches of different energies

circulating simultaneously (e.g., neutron spallation sources and muon accelerators).

Specific to scaling FFAGs is that the optics are the same regardless of energy, allowing

for tuned lattices at a wide range of reference particle momenta. It is possible to get

pz±16% for νSTORM [50]. A FODO lattice requires larger magnets to increase the aper-

ture, which results in higher magnet costs since costs scale with magnetic volume [67].

This can be partially mitigated by making β small in the nondecay straight. The details
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Figure 4.11: Number of muons from the pion decays within the decay-ring aperture of
pz between 3.42 GeV and 4.18 GeV.

of the design implementation are beyond the scope of this thesis and can be seen in the

LOI [50].

The probability of the pion decaying depends on the straight length and pion en-

ergy. The ring has a 150-m straight section. The cτγ of a pion with momentum 3

GeV/c is 280 m; therefore, the probability of a pion decaying in a 150-m straight is

1 − exp[−150/280] = 40%, which forms an upper limit on the number of resulting

muons.

The pion decay kinematics must be taken into account because only 3.8±0.38 GeV/c

muons are transported in the ring. The muon acceptance is the fraction of muons from

pion decay that are within the dynamic aperture of the ring. A Monte Carlo (MC) was

written for this thesis to compute the acceptance by sampling the phase space of the
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resulting muons in the pion rest frame, then boosting to the laboratory frame. Only 40%

of the pions decay. Only 35% of the pion decays result in a muon within the longitudinal

acceptance (Fig. 4.11). Lastly, only half of the muons within the longitudinal acceptance

are within the dynamic aperture. Thus the combined probability that a decaying pion

results in a useful muon (µ per π) is about 7%.

Studies were performed [50] for both styles of ring (FFAG and FODO) to determine

the efficiency of a muon within the dynamic aperture, Adynamic, being transported around

the ring. Particles within the dynamic aperture can be lost due to nonlinearities in the

lattice. Every study has shown a greater than 90% efficiency after 100 turns for muons

ignoring decays; 90% will be taken as a lower limit.

Only muons that decay toward the far detector result in neutrinos that may be used

for oscillation physics. The decay length of the muon is much longer than the size of the

accelerator; therefore the decay probability distribution is uniform throughout the ring.

The ratio Ω of the decay straight length to the ring circumference must be maximized to

increase the neutrino flux. The arc lengths are fixed and determined by the dipole magnet

fields. As an estimate, assume that the field is 2 T and, with p[MeV] = 300Br[T-m],

where B is the magnetic field and r the bending radius, then 2πr ≈ 40 m. The two

straights are 150 m each; therefore, the circumference is 350 m. The fraction of useful

muons is Ω= 43%. The diminishing returns on the investment of buying more magnets

results in it being inefficient to increase the straight length indefinitely.
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Figure 4.12: Comparison of νSTORM to other muon-decay facilities. In terms of muon-
decay multiplied by the mass of the detector, νSTORM would have 105 times less expo-
sure, but is at a much shorter baseline. Data points reflect the information in [50,57,68].
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4.3 Number of useful muon decays

Under the assumptions discussed, the number of useful muon decays can be determined:

Nµ = (POT)(π per POT)εcollectionεtransportεinjection(µ per π)AdynamicΩ (4.3)

= 1021 × 0.09× 0.9× 1× 0.9× 0.07× 0.9× 0.375 (4.4)

= 1.8× 1018 good muon decays. (4.5)

νSTORM has a smaller exposure (i.e., muon decays multiplied by the mass of the de-

tector) than other NF facilities (Fig. 4.12). As a comparison, the standard neutrino-

factory design (IDS-NF 2.0) has 1021 muons per year. The standard neutrino factory and

νSTORM differ by 5 orders of magnitude in exposure: approximately 2 from detector

size, 1.5 from collection and cooling, and 1.5 from targeting. These are significantly

different facilities in terms of their requirements.

4.3.1 Beam instrumentation

One motivation to use muon-decay beams is that they should have smaller flux uncertain-

ties than pion-decay beams. The accelerator neutrino beam that discovered the muon

neutrino had 30% flux uncertainties [51] that did not affect the experimental results.

Over the past 50 years, the same technique has been used to produce all accelerator

neutrino beams. The main differences are the number of POT and that the inclusion of

horns has helped beam brilliances. In this time, flux uncertainties have dropped to only

15%. These uncertainties are mainly dominated by hadron production uncertainties,

despite the efforts of HARP [69], MIPP [70], and NA61/SHINE (and predecessors) [71].

The claimed flux uncertainty for the 25-GeV/c neutrino factory is 0.1% from beam

instrumentation [57] but has never been demonstrated experimentally. The beam in-

strumentation accomplishes two goals beyond accelerator operations: First, the beam
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instrumentation can be used to normalize the oscillation physics analyses by precisely

determining the flux. But second, νSTORM will be the first practical demonstration that

neutrino factory beam instrumentation can actually measure the beam to the precision

claimed by simulation.

Various beam instrumentation systems are being considered. The two most important

are beam-current transformerss (BCTs) and polarimeters, which measure the number

of circulating muons and their energy spectrum, respectively. The beam current being

considered is about 10 µA, which is small compared to typical electron or proton storage

rings. However, techniques that are used for measuring beam currents during slow

proton-beam extractions can be applied to the νSTORM decay ring. Another important

feature of the beam is that it has the bunch structure of the MI, which—even though

there is no RF—does not decohere since particles of different energy are still going the

same speed. However, measurements, similar to what has been achieved in the MI and

at J-PARC, should be possible, although more simulation is needed [72].

A polarimeter to measure the energy spectrum is also envisioned. A design exists that

has been thoroughly studied and simulated within the IDS NF effort. (See Sec. 6.1.1 for

a detailed discussion of polarization.) The energy must be well known for the oscillation

physics, because neutrino interaction rates are proportional to E3
µ
—E from the cross

section times E2 from the opening angle. A thorough systematic study has not yet been

performed, but the energy uncertainties are expected to be below 1% based on the

arguments in [57] which rely upon experience with existing (different) accelerators.

However, if the energy distribution is not well known from accelerator instrumentation,

then the near detector can measure it.

The concept behind the polarimeter is that muons are polarized by the V-A interaction

in pion decay—the muons need the “wrong” helicity state—and this polarization can be

measured with electrons from the subsequent muon decay. If the time evolution of the

polarization is well known, then the energy is also known from the physics of Thomas
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Figure 4.13: D0 assembly building. This building serves as an ideal location for the far
detector.

precession. The polarimeter is a scintillator detector downstream of a dipole magnet:

electrons will have less momentum since they are decay products and will bend into the

polarimeter, while muons will continue on down the beam pipe.

4.4 Detectors

At least two detectors are envisioned: a near detector at 50 m and a far detector at

2000 m from closet point in the decay-ring straight. The near detector will be in a large

hall to serve future experiments and detectors with a well-understood neutrino test

beam. For example, experiments from the long-baseline neutrino experiment (LBNE)

and long-baseline neutrino observatory (LBNO) collaborations could make ancillary

measurements at this test beam to aid their future programs. These future long-baseline

experiments are unable to measure their electron neutrino response in any conventional

test beam, which also results in electron-neutrino cross-section uncertainties. The far

detector at 2000 m could be situated on the surface in the D0 assembly building (DAB)

(Fig. 4.13) in the Fermilab siting plan (Fig. 4.2).

As mentioned before, muon-decay neutrino-beam experiments require magnetiza-

tion to perform appearance measurements. The favored detector technology is a sam-

pling iron-scintillator calorimeter, similar to the MINOS/CDHS designs. Engineering such

a detector is straightforward and has been performed [50] (Fig. 4.14 and Fig. 4.15).
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Figure 4.14: Engineering diagram of far detector as viewed by the beam [50].
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Figure 4.15: Engineering of far detector as viewed off-axis [50].
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Figure 4.16: Layer assembly. A y view is placed on top of an x view, which is stacked
on top of a steel sheet.

These calorimeters are built from alternating circular sheets of steel and scintillator

(shown before in Fig. 3.1 and Fig. 3.2). The steel plates will be 2 cm thick, have a 5

m diameter, and be skip welded from two half-moon steel pieces. By having a simpler

plate construction and welding than MINOS, the field uncertainties should be smaller.

A view is formed by stacked 1 cm2 scintillator bars. Two views measure the position

transverse to the z beam-direction axis, where the y axis is local vertical and the x axis

is defined so that x , y, and z form a right-handed coordinate system. The y view is

mounted to the x view, which is supported by the steel plane (Fig. 4.16). The two views

and steel plane form a layer. By having the x and y views adjacent, it is possible to form

3 dimensional space points if a muon traverses the layer.

The active regions consist of scintillator bars with embedded wavelength shifting

(WLS) fibers (Fig. 4.17), which is a standard detector technology in particle physics.

Scintillation light is capture by a WLS fiber where the photon is reemitted with a dif-

ferent wavelength which has a longer attenuation length. The scintillator bars have a

cross section of 1 × 1 cm and consist of extruded polystyrene doped with blue-emitting
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Figure 4.17: Wavelength shifting fiber within a scintillating bar. When a muon traverses
the bar (dotted line), it deposits energy that is converted into light (pink). This light
reflects within the bar until it hits the fiber (green), after which the light total internally
reflects within the fiber. Most reflection is spectral (i.e., angle in equals the angle out).

fluorescent compounds, a coextruded TiO2 outer layer for reflectivity, and a hole for the

WLS fiber. The WLS fiber uses PPO and PPOP as the wavelength shifter. This technique

has been used by numerous experiments. (See [50] for more scintillator details.)

The light can be detected by silicon photomultipliers (SiPMs). (See [73] for review

of SiPMs.) These are now a proven technology that is being used at experiments such

as T2K [74]. SiPMs consist of a 2D array of avalanche photodiodes (APDs) working in

Geiger mode on a single silicon chip. Each APD is sensitive to single photons, but by

connecting the APDs in parallel it is possible to measure the number of incident photons,

assuming that the APD density is high enough (i.e., Nphoton < Npixel). The size of these

devices is 20–100 µm, so a WLS fiber can be glued directly to it. APDs provide adequate

gains and quantum efficiencies (∼80%) for particle physics purposes. Compared to PMTs,

they are cheaper, do not age, and work in magnetic fields. However, other technologies

could be used instead. The only requirement for the appearance analysis is that it is

known when bars are traversed by a minimum ionizing particle.

The readout is still to be decided, but there are many possibilities. The main consid-

eration is price per channel rather than physics. The most expensive option would be to

design an application-specific integrated circuit (ASIC), but it may be less effort—and
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Figure 4.18: The superconducting transmission line used for detector magnetization
[75].

cheaper—to use a preexisting design from another experiment or industry. Since these

are just silicon chips, they are cheap to produce in bulk but expensive to design.

A STL is used to magnetize the detector in order to saturate the steel (B ≈ 2 T).

As seen in Fig. 4.19, the steel is saturated out to the edges of the plates, unlike the

MINOS ND which has a field of about 1 T in their analysis region. The STL was devel-

oped for the design study of the VLHC, and a 17-m functioning prototype was built at

Fermilab [75] that carried 100 kA. NbTi superconductor and copper braiding is wrapped

around an Invar cylinder (Fig. 4.18). The 2.5-cm bore of the Invar carries superfluid

helium at 4.5–6 K. The helium cools the superconductor through the Invar. A small coax-

ial cryostat surrounds the superconductor. The advantage to having a small conducting

cable to magnetize the steel detector planes is that it can be fed through a hole in the

detector planes (Fig. 4.15 and Fig. 3.1). In MINOS—which has a larger regular conduct-

ing cable to magnetize the steel—muons sometimes traverse the cable, which leads to

reconstruction uncertainties. Having a small coil reduces this source of uncertainty.

A total current of 250 kA is assumed to flow through the STL at the center of the
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(a) νSTORM.

(b) MINOS ND [45].

Figure 4.19: Magnetic field in νSTORM compared to the MINOS ND, where the color
scale is in units of tesla. For νSTORM, the steel is saturated throughout most of the
steal at 2 T. However, for the MINOS ND, the field varies from 1 to 2 T throughout their
plates.
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detector, which based on finite element analyses saturates the steel [50]. The STL could

reasonably carry 50 kA per turn, requiring five turns for saturation.

As an aside, additional detectors—beyond the sterile neutrino program—could be

added to further utilize the beam. Given the cost of construction the νSTORM accelerator,

is should be expected that there will be numerous other experiments operating in the

same beam: νSTORM could be viewed as a user facility, much like the light source

Diamond. For example, cross section measurements could be performed with this well-

understood beam, as well as the first νe cross section measurements. Also, detector

prototyping could be in a νe beam—the typical signal for long-baseline experiments.

Lastly, there are all the experiments that have not been thought of that may want the

next generation of neutrino beam. However, all of these applications are beyond the

scope of the thesis question: “are there sterile neutrinos?”

4.5 Conclusion

In this chapter, the high-level design and engineering of νSTORM was described. The ac-

celerator forms the majority of the facility but requires little technical R&D. The stochas-

tic injection, FFAG, and beam instrumentation provide interesting accelerator physics.

For the detectors, a classic design is used for the oscillation physics program, while

leaving room for other detectors to take advantage of the beam line.
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Chapter 5

Detector performance

Science is what we understand well

enough to explain to a computer. Art

is everything else we do.

Donald Knuth

In this chapter, I present the MC that I wrote from scratch and also the cuts I developed

for the appearance analysis.

Up to now, only back-of-the-envelope calculations have been used to design νSTORM

(Chap. 3); more thorough calculations are now presented to confirm thatνSTORM is able

to resolve the LSND anomaly at a suitable level of confidence. After a reminder of the far

detector technology choice, a way of extracting the appearance signal CC interactions

νe → νµ—the CPT conjugate of the LSND channel—from the data is discussed. The

physically motivated cuts that were developed earlier are extended to depend only upon

measurable quantities such as reconstructed track length. A G E A N T 4 MC was written to

demonstrate that this small muon-appearance signal is observable at 3 GeV. The work in

this chapter summarizes the appearance analysis, MC design, and detector performance.

The detector must be magnetized to differentiate “right-sign” and “wrong-sign” muons

resulting from the channels ν̄µ→ ν̄µ and νe→ νµ, respectively (Table 3.1). As was dis-
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Figure 5.1: The MINOS neutrino energy spectrum for neutrino-mode runs. [76]

cussed in Chap. 3, magnetized iron sampling calorimeters—also called magnetized iron

neutrino detectors (MINDs)—are the chosen detector technology. MINDs were invented

in the 1970s and are a well-proven technology (e.g., CDHS, MINOS experiments) for

identifying muon final states, and are the only economic way of building large magne-

tized detectors. The steel acts as both a muon ranger and spectrometer. (Brief technical

information is discussed in Sec. 4.4, or [50] and references therein.)

MINDs were originally designed for DIS studies in the energy range Eν = 30–70

GeV [77], but MINOS used a MIND at energies less than 10 GeV. Specifically, the MI-

NOS near-detector energy spectrum in the low-energy configuration is peaked at 3 GeV

(Fig. 5.1) and similar to what is expected for νSTORM; therefore, MINOS has already

demonstrated the validity of particle interaction models in the νSTORM energy range—

more on this is discussed later when the MINOS calibration detector is discussed in the

context of systematics.

The biggest difference between νSTORM and MINOS is the analysis. The analy-
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Table 5.1: Channels, interactions, and cuts for the appearance analysis. The oscillation
channels

(−)
νe →

(−)
νe,

(−)
νµ→

(−)
νµ, and

(−)
νe ↔

(−)
νµ (i.e. all channels below τ threshold) can be

explored. Both NC and CC interaction types are presented.

Decaying particle Channel Interaction Cut

µ+

νe→ νµ CC (Signal; do not cut)
ν̄µ→ ν̄µ CC Curvature
ν̄µ→ ν̄µ NC

Range
νe→ νe CC/NC
ν̄µ→ ν̄e CC/NC
νe→ νµ NC

π+ νµ→ (νµ or νe) CC/NC Timing

µ−
ν̄e→ (ν̄e or ν̄µ) CC/NC

Known from magnet polarityνµ→ (νµ or νe) CC/NC
π− ν̄µ→ (ν̄µ or ν̄e) CC/NC

sis that MINOS was designed for involved a νµ disappearance spectral fit to measure

atmospheric-neutrino parameters. MINOS does do appearance searches, but only elec-

tron appearance [78] to attempt to measure θ13. However, unlike MINOS, νSTORM is

designed for muon appearance.

5.1 νµ CC appearance requirements

The wrong-sign muon appearance signal needs to be separated from seven other event

topologies: having two initial neutrinos from muon decay, with two possible final states,

and two interaction types results in 2× 2× 2 = 8 event topologies (Table 5.1). All of

these other channels need to be separated from the appearance channel CC νe → νµ.

Existing work on isolating CC νµ appearance events—the so-called golden channel—has

been studied extensively for NF R&D studies [57], and can be adapted to νSTORM.

As an aside, it is interesting to note that the pion-decay neutrinos in νSTORM are not

typical of NFs, and could possibly be used as, e.g., a charge-ID calibration.

Accelerator operators know the injected beam polarity since the horn current can

be changed to only focus either positive or negative particles; therefore, neutrinos from

92



π− and µ− decay—remember, the signal comes from µ+ decay—can be ignored in this

analysis. The polarity of the horn, chicane, and injection magnets will be known because

it is the polarity of a power supply. The beam polarity is known at any given time;

therefore, only half of the event topologies in Table 5.1 need to be separated from the

CC νe→ νµ signal.

In positive polarity running, π+s are injected into the ring and decay to µ+. These

decays only occur within one straight of the ring, and within 500 ns of injection. The

pion momentum is 5± 0.5 GeV, where the tails are cut off by the beam line magnets.

Consequently, no pions have momenta within 3.8± 0.38 GeV; collimators can be added

to ensure this is true. The decay ring is designed to only transport 3.8± 0.38 GeV. No

pions will be transported around the first dipole in the decay ring, and even if they did,

the γcτ for a 5-GeV pion is 280 m; therefore pions travel less than one turn. Muons on

average decay in ≈100 turns, and cutting the first turn will reject all pion backgrounds.

A timing cut of 500 ns is technically feasible and will reject all π+ backgrounds thereby

leaving only neutrinos from muon decay.

The channels that remain are from µ+ decay, and cuts need to be designed to iso-

late the appearance signal. For example, the final-state muon will penetrate more steel

than NC events or electrons. All nonmuon final states can be removed with a range cut.

Differences between the νµ appearance signal and the ν̄µ background include muon

charge, energy distributions, and whether the Michel electron annihilates. In the follow-

ing analysis, bending in a magnetic field is used to determine the charge.

Oscillation parameters need to be assumed when designing the cuts; however, the

cut must be effective for a wide range of oscillation parameters. Cuts are designed

assuming that the oscillation probabilities are in the “averaging regime” of large ∆m2

[see Eq. (2.16) to (2.21) on p.p. 32], which results in the oscillation probability being

independent of energy. The normalization is determined at a later step, which removes

any dependence on sin2(2θ). Therefore, for disappearance signals, the cuts are tuned

93



on an unoscillated interaction spectrum. For the appearance signal, tuning is performed

assuming that all νe oscillate into νµ, so the signal νµ flux is identical to the νe spectrum

from muon decay. Depending on the value of ∆m2, the shape of these distributions can

change, which is why the cuts are studied later for a wide range of possible neutrino

parameters.

Before going into the details of the appearance analysis, it is worth making a side

point; it is possible to be more frugal with the neutrinos than wasting those from π+

decay. By analyzing data up to 500 ns after injection stops, it is possible to use the π-

decay neutrinos for different physics analyses. Primarily, the muon disappearance signal

could be used as a calibration since there are as many neutrinos from pion decay as

muon decay. The current favored injection option is to inject into the straight aimed at

the far detector, which will result in a “pure” muon-neutrino beam before the muon-

decay beam. If these pion decays provide difficulty for the muon-decay analysis, they

can be avoided by injecting the beam into the other decay straight.

In addition to calibrations, appearance physics may be possible using these pion

decays. Probing the electron appearance signal—à la LSND—from pion decay is difficult;

the oscillation probability is about 10−3, but there is a 1.2% background of electrons

from muons decay since the accelerator straight is long. For 5 years exposure with a

kilotonne detector, the unoscillated interactions have rates of about 100,000 events,

resulting in
p

1.2%× 100000 = 31 background event. There would be 300 expected

electron-neutrino appearance interactions. Though possible, a special purpose liquid

argon detector would be required to ensure discrimination between
(−)
νe and NC events.

Therefore, it is expected that these pion decays could be used to calibrate the muon

charge-misidentification and energy scale.
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Table 5.2: Simulation parameters within G N O M O N.

Event generator
Code G E N I E

Particles
(−)
νe and

(−)
νµ

Position Uniform in (x , y, z)
Energy Uniform in E ∈ [0,5] GeV

Particle propagation
Code G E A N T 4
Physics models Q G S P_B E R T

Magnetic Field
Model 2D finite element analysis
Approximate field 2 T throughout steel

Geometry

Bar dimensions 5 m × 1 cm × 1 cm
Steel dimension 5 m × 5 m × 2 cm
Layer Steel, x , y , then repeat
Layer dimension 5 m × 5 m × 5 cm
Layers 444
Bars per view 500

Ie = 286 eV

Steel

26Fe
g/mol = 58.85
Density = 7.87 g/cm3

Scint.

Ie ' 64 eV
91%6C , 9% 1H

g/mol = 12.01, 1.01, respectively
Density = 1.06 g/cm3

Electronics
Code G N O M O N

Noise threshold 2 pe
Energy scale 20 pe/(MeV deposited)

5.2 The Monte Carlo simulation

The initial design of νSTORM came from analytic arguments; however, code has been

developed to confirm the detector performance estimates and study subtle effects. Code

was developed based on the G E A N T 4 [79,80] library to model particle transport and

interactions. Also, a wrapper around G E A N T 4 was written called G N O M O N that main-

tains the geometry, simulates the electronics (by photon statistics and attenuation), and

performs reconstruction. The code was made open source, and further information about

implementation details as well as a manual are available online [81].

The simulation parameters used for this analysis are shown in Table 5.2. Neutrino
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Figure 5.2: Kinematic distributions of Eν, Eµ, and hadronic energy for averaging-regime
νe and ν̄µ fluxes. The stacked histograms show the DIS (blue), quasielastic (QE) (green),
and resonant production (RES) (red) cross section components. The normalization
corresponds to one million simulated events.
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Figure 5.3: Overlaid kinematic distributions of Eν, Eµ, and hadronic energy for averaging-
regime νe and ν̄µ fluxes. The distributions are normalized to unity.
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interactions were generated by G E N I E [82], distributed uniformly throughout the detec-

tor volume, and propagated with G E A N T 4 through the geometry, which was shown in

Fig. 4.14 and 4.16. An example distribution of Eν, Eµ, and the hadronic energy (= Eν−Eµ)

is shown in Fig. 5.2 and 5.3. The kinematic distributions are influenced by the QE, DIS,

and RES cross sections—despite not being shown since insignificant, coherent single-

pion production and neutrino–electron scattering are simulated. The electronics re-

sponse within G N O M O N simulates the expected SiPM performance by assuming 20

photoelectrons per MeV deposited in the bar. The details of the electronics has not yet

been determined, yet is not required for this basic simulation.

In the next few sections, there are plots created with G N O M O N that demonstrate

the cut performance. Later in the chapter, this study is generalized such that the cut

efficiency is determined as a function of neutrino energy, thereby allowing arbitrary

fluxes to be used in the sensitivity analysis in the next chapter.

5.3 Range cut

As was shown in Chap. 3, a range cut is capable of separating NC and νe CC events from
(−)
νµ CC events. This range cut relied on hadron showers not traversing as much steel

as muons; however, it used true path lengths. This cut must be redefined in terms of

measurable path lengths from digitized MC hits.

Following previous experiments like MINOS, NuTeV, and CDHS, the range is defined

in terms of the number of hit layers. These hit planes need not be contiguous, though

imposing continuity requirements does not negatively impact the cut performance.

A range cut was implemented in G N O M O N by counting the number of hit layers.

Fig. 5.4 shows the efficiency for signal and background versus number of layers. More

than 100 layers must be penetrated to achieve a NC/νe-CC background of <10−5. After

the 100-layer cut, the signal efficiency is 20% while the background efficiencies are
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Figure 5.4: Performance of the range cut for LSND best fit of 8.9 eV2. Efficiency is
plotted on both a linear (top) and logarithmic (bottom) scale. All relevant channels
from stored-µ+ decay are shown. Requiring more than 100 hit layers, which a roughly
2 GeV muon-energy cut, removes 80% of the signal but results in backgrounds at the
O (10−5) level, where 100 hit layers corresponds to 2 m (4 m) of steel (gapless detector).
The continually-slowing-down approximation range for a muon is shown at the top.
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Figure 5.5: A diagram demonstrating hit ghosting. Shown are two views, x and y , where
an orange and green particle have lit up two bars each. The situation on the left and
right are indistinguishable using only position information.

at the 10−5 level. A substantial amount of signal needs to be removed to reject the

backgrounds. The difference between muon appearance and disappearance is caused

by the neutrinos having different energy distributions (Fig. 3.5) and different y =

(Eν − Eµ)/Enu distributions.

5.4 Pattern recognition algorithm

A curvature cut is required to determine if muons—the only particles that pass the length

cut—are being focused or defocused, and is equivalent to the question of whether or

not the muon track radius is increasing or decreasing in z. However, this requires being

able to extract the muon track from a collection of hits, which is complicated by ghosting

in the detector (Fig. 5.5), whereby it is impossible to match x and y views when two

particles cross if only hit position information is used. Accordingly, the hits associated

with the muon track must be extracted before it is possible to determine the curvature

of the track.

An algorithm for extracting the muon track has been developed. Muons have long

isolated tracks; therefore, it is easy for humans to identify muons in event displays, as can
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Figure 5.6: Event display in the y view of digitized hits corresponding to a νµ CC DIS
event where the muon has been extracted. The algorithm described in Sec. 5.4 was used
to extract the muon track (seen in red).
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Figure 5.7: An example graph where vertices are circles, and the edges are lines. Each
vertex is labeled with a letter. The graph is weighted by the number at each edge. The
graph is not directed, but contains a cycle a→ b→ a. Starting from point a, the longest
path is a→ b→ c→ d with distance 6.

be seen in Fig. 5.6. However, developing a computer algorithm is less straightforward

since computers—sadly—do not have innate pattern recognition abilities.

Numerous methods exist for finding muon tracks in
(−)
νµ CC events (reviewed in [83]

and references therein). Most algorithms make the reasonable assumption that the

muon is the longest track in the interaction, and that the beam interaction vertex is at

the most upstream hits. For this thesis, a graph theoretic method is developed, which

was independently developed in 1971 by Zahn for spark chambers [84].

Graph theory is a well studied field1, where problems typically entail finding the

extreme paths through an interconnected set of points. Example graphs are shown in

Fig. 5.7 and 5.8, where the simplicity of these abstract objects can be seen. The vertices

are labeled circles, and a path—and respective distance—exists between various vertices.

As previously mentioned, graphs can be used to find extreme paths; in the case of

νSTORM, the extreme path is the muon. Graphs are used in a wide range of models:

e.g., travel planning2, power distributions, traffic flow, and even coloring books. In the

case of computer networks, the extreme path is the quickest path between two devices

that need to send packets to one another. However, in the case presented here, graphs

are used to identify the muon.

1Part of why they are well studied is because they are generalizations of finite-state machines, trees,
and automata, which are used extensively in computer science. Graph theory is reviewed in [85].

2See traveling salesman problem.
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Figure 5.8: A directed graph, where the direction is given by arrows. The graph is not
connected, and contains three connected subgraphs containing vertices a– f , g, and h– j.
The top subgraph contains a cycle. The bottom connected graph is a directed acyclic
graph. The longest path is the bottom subgraph starting from vertex a is a→ d → e→ f
with length 11.
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Table 5.3: Requirements for an edge between graph vertices (x i, zi) and (x j, z j).

Requirement 1 zi < z j

Requirement 2 |x i − x j|< 5× (bar width)
Requirement 3 z j − zi = (layer width)

As can be seen in the figures, a graph is a set of vertices and edges. Without loss of

generality, only the x view is discussed at first. A hit in the x view has a location, which is

represented as an ordered pair (x i, zi). The transverse coordinate x i is determined from

the bar number, and zi, in the beam direction, is determined from the layer number.

Now that the vertices have been identified, the next step is to define how edges

are created. Every edge between two vertices must satisfy three requirements. The

direction of the edges “point” downstream, which is the path of muons from beam

interactions (Requirement 1). Tracks are distinguishable if separated by five bars, so

there are no edges between hits belonging to different tracks (Requirement 2). Lastly,

edges should be between neighbors and there should not be ’shortcuts’ to the end of the

track, which could underestimate the track length (Requirement 3). More technically,

this graph is transitively reduced since if there is an edge a→ b and another edge b→ c,

there cannot exist an edge a → c. The transitive reduction ensures the path length is

accurately estimated, including not having cycles that result in infinite path lengths.

These requirements are summarized in Table 5.3.

Finally, the graph that will be used for pattern recognition is weighted. Every edge

between two vertices has a numerical weight associated with the Cartesian distance

between the respective hit bars. In other words, this is a Cartesian-weighted digraph

with weighting w(vi, v j) =
Æ

(x i − x j)2 + (zi − z j)2. These weights are used when finding

the longest path.

To identify the longest path, the neutrino interaction point is chosen to be the start

of the longest path. This point is identifiable because it is the vertex in the graph that
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Figure 5.9: An illustration of why, after the extreme vertices have been identified, the
shortest path between them must be computed. Scintillator bars are represented by
boxes, and are hit when filled in green. The distance between the leftmost and rightmost
hits can be calculated in different ways. For example, the solid blue path zigzags due to
the hit doublets and overestimates the muon path length. However, the minimal distance
shown in dashed orange corresponds to a path closer to the muon path.

has the most paths to other vertices in the graph. This is called the most accessible node3

(e.g., vertex a in Fig. 5.8 is the most accessible node). By defining the interaction vertex

to be the most accessible node, rather than the most upstream hit, ambiguities from the

nuclear breakup releasing neutrons that create upstream “fake” hits is removed.

With an initial point identified, the longest direct path in the graph can be found. For

every point in the graph, the distance between it and the interaction point is computed.

To ensure a direct path back to the interaction point, the Bellman-Ford algorithm [86,87]

is used4. The longest of these paths is called the muon. For example, in Fig. 5.8 it

would be the path a to f with a cumulative weight of 11. More mathematically, the

most direct path between any two vertices is also the shortest path. Therefore, if P =

3This vertex is found by taking the transitive closure of the graph and then counting the number of
edges from each point.

4The Bellman-Ford algorithm requires a directed acyclic graph (DAG) because, otherwise, the com-
plexity of the problem is NP-complete. The DAG requirement is satisfied by the problem being physical;
therefore, edges only point downstream. For a DAG using this algorithm, the worst case runtime is
O (|V ||E|).
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{set of shortest paths between every two hit bars}, then the muon is the path max (P).

The computation of shortest paths prior to the selection of the muon path avoids zig-

zagging artificially lengthening the track (Fig. 5.9). Hits immediately adjacent to a hit

in the path (i.e., doublets) are added to the muon path.

Other “legs” of the interaction—e.g., if two muons emerge from the interaction

point—can be found by removing the muon track and then repeating the extraction

routine. This is particularly useful for for events with multiple pions and muons, such

as from resonant production, but is not relevant for
(−)
νµ CC QE or DIS.

This algorithm identifies final-state muons. In the event display shown in Fig. 5.6,

a muon is found using this algorithm. The muon track is identifiable as the track that

extends from z = 4 m to z = 8 m, and is shown in red. The interaction vertex was well

identified and the hadronic noise around the vertex did not affect the search for the

interaction vertex. A second track extraction was attempted, but no other track could

be found.

In contrast, in Fig. 5.10, which is a NC event, no long track (i.e., muon) is found.

The longest track is 60 cm, and attempts at finding other tracks failed. Note that the

interaction vertex was found. The algorithm still performs well, but did not find a muon

candidate that satisfied the criterion of a 4 meter track.

5.5 Track fitting

Each view was dealt with independently but the views still need to be combined to

form 3D space points, resulting in a set of vertices VX and VY for the x and y views,

respectively. At this point, since the longest-track muon has been found by the algorithm

in the previous section, there is only one measurement per x- and y- detection plane. It

is then possible to define a 3D space point without any concern for ghosting. At the end

of the algorithm there is a set of (x i, yi, zi) associated with the track.
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Vertex

Figure 5.10: Event display in the x view of digitized hits corresponding to a νµ NC event.
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Figure 5.11: Sketch of fit procedure using fake data of a muon track. The data points
do not correspond to a simulation or data but were rather chosen to demonstrate the
fit procedure. The top plot shows the x vs z and y vs z projections of a potential muon
track, where it can be seen that the radius of the track is increasing so the muon is being
defocused. The bottom plot shows the polar projection of the same data, where it can
be seen that the muon is being defocused and will exit the detector.
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After the track has been extracted, there exists a set of (x i, yi, zi) coordinates asso-

ciated with the event track. A fit is performed to parameterize these points into three

numbers. The track is fit using the simple second-order polynomial function

r(z) = a+ bz + cz2, (5.1)

where a least-squares fit is performed in order to minimize,

R2 =
∑

i

�

r(zi)−
q

x2
i + y2

i

�2
. (5.2)

The result of the fit is values a, b, and c that correspond to an offset, slope, and curvature,

respectively. The sign of the curvature c corresponds to the muon being focused or defo-

cused. As illustration of the fit procedure is shown in Fig. 5.11, where ri is determined

for each zi then fit to a second order polynomial. In this case, the particle is defocused

since the radius is increasing.

This track fit is considerably simpler than those typically used in particle physics

experiments. For example, the trajectory for the muon is assumed to follow the simple

quadratic equation in Eq. (5.1), where this is an approximation of the true trajectory.

Effects such as the muon slowing down or multiple scattering are ignored. As a result,

much of the muon-momentum information is lost and muon range must be used in-

stead. Numerous more advanced methods exist for track fitting (e.g., Kalman filtering);

however, as will now be presented, this simple fit performs remarkably well.

5.6 Curvature cut

Track curvature can be used to differentiate µ+ and µ−, and the Lorentz force law applies

to these muons,

F =
d~p
d t
= q

�

~v × ~B
�

, (5.3)
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Figure 5.12: Lorentz force [88].

where F is the force, ~p is the momentum 3-vector, t is the time, q is the charge, ~v is the

muon velocity, and ~B is the magnetic field (Fig. 5.12). The field is toroidal as was shown

in Fig. 3.1, which results in ~v and ~B being at approximate right angles since, topologically,

a toroidal field is locally dipole (i.e., the muon only ’sees’ a dipole field if it does not

travel too far). The formalism is nonrelativistic—the results are easily generalizable to

relativistic muons—but all muons travel at roughly the same speed relativistic β = 1.

Therefore, ~v × ~B = |~B| in natural units, and

F =
dpr

d t
∼ q|~B|. (5.4)

The field B is the same for µ+ and µ−; therefore, the only variable that affects the

direction of the force is the charge q. If q is negative (e.g., µ−), then the particle starts

traveling toward the center of the detector (i.e., dpr/d t < 0) and is said to be focused

by the field. Conversely, if q>0, then the particle is said to be defocused.

The muon charge identification performance is determined. After requiring the range

cut of 100 Fe planes outlined previously to be satisfied, it is possible to look at the fit

parameter c for CC νe → νµ and CC ν̄µ→ ν̄µ events (Fig. 5.13), which will determine

whether muons are being focused or defocused.

A simple cut of requiring c < 0 for µ− and c > 0 for µ+ is effective at determining
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Figure 5.13: Linear and log distributions of curvature for CC νe → νµ signal and CC
ν̄µ→ ν̄µ background after a 100-Fe-plane track-length cut for LSND best fit of ∆m2 =
0.89 eV2. Negative values correspond to focusing toward the beam axis, while positive
values are defocused. A cut at c = 0 separates the distributions. The long tail for CC
νe → νµ toward positive values is a geometric effect. The standard 2 cm of iron, 2 cm
of scintillator, and 1 cm of steel was assumed.
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the charge for most of the particles (Fig. 5.13a). The tail of the signal distribution in

the positive direction is not matched by a tail of the background distribution in the

negative direction due to the choice of coordinate system. The variable c is positive if

the radius from the central coil increases, and negative if the radius decreases. Muons at

small radii cannot have decreasing radii. Therefore, focused particles do not have tails

of small values of c. This geometric effect reduces the tail of the background distribution

into the signal window. When the magnetic field is flipped, the tail exclusively extends

in the other direction. This is simply a statement about the definition of the coordinate

system.

Fig. 5.13b shows the distribution of c, and the level to which the background distri-

bution leaks into the signal window of c < 0 is determined. The 2D Opera field model

mentioned in Table 5.2 was used, which results in a 2-T field throughout most of the

detector. No background events have c < 0 and 531077 events were simulated; there-

fore, the Poisson upper limit is 2.3/531077= 4× 10−6. The remaining signal efficiency

for just the curvature cut is 87%. The cut is effective at reducing right-sign muons by

having both a high purity and efficiency.

In order to show the dependence on the field strength, the field is reduced by 20%

and is shown in Fig. 5.14 (compare to Fig. 5.13). Despite the saturation of the steel, finite-

element analyses show that it is sufficient to approximate the lower field by applying

a linear scaling [89]. If the field is lowered 20%, the charge misidentification rate will

rise to O (10−4), which is within the specification from the previous chapters.

5.7 Performance after all cuts

The two cuts that have been designed give the requisite background rejection forνe→ νµ

appearance searches. Fig. 5.15 shows the cumulative performance of the cuts as a func-

tion of the neutrino energy Eν, which can later be used to determine the sterile neutrino
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Figure 5.14: Distribution of curvatures for background and signal for 80% field strength
with ∆m2 = 0.89 eV2 and a range cut of 100 iron planes.
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Figure 5.15: Efficiency curve for a simple cuts-based analysis. Error bars shown for all
points and arise from the statistics from the simulation.
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sensitivity with different neutrino fluxes. For neutrino energies of 3 GeV, this appearance

search is 30% efficient. The signal efficiency plateaus at 35%. The background levels are

at O (10−5), as required. This efficiency curve agrees with the later independent work

presented in [50] that used Kalman filtering and likelihood cuts.

5.8 Conclusion

A MC has been implemented to strengthen the arguments that νSTORM is able to do

muon appearance physics. An electronics simulation and pattern recognition algorithm

were designed to derive these performance estimates. Lastly, two simple cuts have been

designed that demonstrate the required background rejection levels.
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Chapter 6

Appearance physics sensitivity

Chris. I don’t want to see any more

5σ contours. I want 10σ.

Stephen Parke (theorist)

Chris. We don’t believe you when you

say 10σ.

Luca Stanco (experimentalist)

Having determined the detector performance in the previous chapter, it is now pos-

sible to determine the sterile neutrino sensitivity. The work presented here supersedes

the work in [50, 90, 91]. (See [92] for work on disappearance measurements.) The

method developed here has been used for all νSTORM sterile neutrino plots, at the time

of writing.

Sensitivity contours of the neutrino parameter space have been calculated for over

20 years, so the methods used here are fairly standard. Even though the work presented

is new, the principles are the same. However, there is one major difference; the flux

computation developed here is the most sophisticated treatment of muon-decay-beams

to date. This is primarily because this is a study that integrates over the phase space
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Table 6.1: Electroweak muon-decay parameters.

Particle f0(x) f1(x)
νµ 2x2(3− 2x) 2x2(1− 2x)
νe 12x2(1− x) 12x2(1− x)

of the beam. Said differently, most NF studies (e.g., [57]) assume a point source of

monoenergetic muons.

For any neutrino experiment, the calculation of sensitivity requires the following

sequential well-established computations:

1. flux Φ,

2. oscillation probability (Prob),

3. cross section σ,

4. number of interactions Nint = Φ(Prob)σ, where σ = σnucleon × Nnucleons,

5. number of events Nevt. = Nintε for efficiency ε, and

6. test statistic χ2,

where all of these are energy dependent. For example, as was shown in Fig. 3.5, mo-

noenergetic muon decays produce a wide-band neutrino beam, so the flux depends on

energy. Similarly, the other items in the list above depend on energy, as will be discussed

in this chapter.

6.1 Neutrino flux: Φ

Interest in µ-decay beams is because they can have a two orders of magnitude smaller

flux uncertainty (0.1%) than π-decay beams (∼20–40%). This has never been shown

experimentally—which is part of the motivation for νSTORM—but is motivated by two
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key arguments: one can better measure a muon beam than pion beams since muons are

longer lived, and avoid the production uncertainties from a fixed target beam. Measuring

the beam is easier since the cτ of a muon is 600 m/7 m ' 100 times longer than that

of a pion; therefore, muons are stored in an accelerator, and can be measured using

accelerator beam diagnostics. Also, the production uncertainties from π decay from the

proton–nucleon production mechanism is avoided because, once again, the muon beam

can be measured in situ. Also, uncertainties in the number of, e.g., kaons produced at

the target station are irrelevant since kaons will decay (cτ= 3.7 m) before the muons

and pions do.

Once the muons have been separated from πs and Ks and measured, the muons will

decay. This electroweak muon decay µ+ → ν̄µνee
+ is well understood, and produces

equal numbers of ν̄µ and νe. The neutrino flux from muon decay was already discussed,

but this discussion will now be expanded here. Previously, only the
(−)
νe flux was shown,

but ν̄µs from µ+ decay result in backgrounds and must understood. More generally than

Eq. (3.21) on p.p. 56, the neutrino spectrum for a µ±→ e± + νe(ν̄e) + ν̄µ(νµ) decay in

the rest frame of the muon is

dn
d x dΩ

=
1

4π
[ f0(x)∓P f1(x) cosθ] , (6.1)

where n is the number of muons, x = 2Ec.o.m.
ν

/mµ ∈ [0, 1] is the scaled neutrino energy

in the rest frame, Ω is the solid angle in the rest frame, f0(x) and f1(x) are muon-decay

parameters (see Table 6.1), and P is the polarization. The muon-decay parameters are

different for νe and ν̄µ, which results in different neutrino spectra (see, e.g., Fig. 3.5).

6.1.1 Polarization

The beam polarization P affects neutrino fluxes, as can be seen from Eq. (6.1). For

instance, if the polarization P is unity, then the νe flux from µ+ decay is zero since
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the νes are at rest in the laboratory frame [Eq. (6.1)]. (Polarization of muon beams is

explored extensively in [93].)

Muons at νSTORM are tertiary beams and arise from pion decay. Pions, however, are

long lived because they have zero spin (J P = 0−) and therefore have helicity suppressed

decays. For the decays π+ → l+νl to conserve spin, the charged lepton l+ must be

righthanded since the neutrino is chiraly lefthanded. This helicity suppression is why

the pion-decay mode π+→ e+νe is suppressed at O (10−4) compared to π+→ µ+νµ. The

helicity of the µ+ is then –1 in the pion frame.

However, this spin is a projection onto the momentum vector of the muon, which

changes as the muons circulate around the ring. Each particle within a bunch has a spin

~S, which undergoes Thomas precession. Polarization is defined as the ensemble average

of the spin vectors:

P =











Px

Py

Pz











= 〈~S〉=
1
N

N
∑

i

~Si. (6.2)

The projection of the polarization vector on the beam axis P · ẑ = Pz is called the

longitudinal polarization.

The initial polarization can be determined using similar methods employed for NF

studies. The muon has a helicity in the laboratory frame,

h=
EE∗ − γπm2

pp∗
, (6.3)

where m, p, and E are the muon’s mass, momentum, and energy, respectively [94].

The starred and unstarred frames correspond to the pion-rest and laboratory frame,

respectively. (For a more comprehensive treatment, see [95].) The polarization can now

be determined by averaging over the decay kinematics.
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Approximations can be made to determine h without using an MC accelerator sim-

ulation, such as G4B E A M L I N E. The muon and pion energy distributions are different

since the decay ring lattice is designed to only transport muons that decayed backward

in the pion rest frame. The muon distribution in the pion rest frame is isotropic. Us-

ing a toy MC and only considering backward decaying muons, the average helicity can

be computed using Eq. (6.3). The longitudinal polarization is −48% in the laboratory

frame.

The evolution of the polarization in the ring can now be determined. The spin

precession frequency for a polarized muon is

ν =
gµ − 2

2
Ebeam

mµ

(6.4)

=
Ebeam

90.6233 GeV
, (6.5)

where g − 2 is well measured to one part in 108. νSTORM is far from a spin resonance;

the closest is n = 24. Without an energy spread, muons coherently Thomas precess.

Since g − 2 is not zero, the spin precesses at a different frequency than the circulating

muons do. Also, an energy spread results in the spins precessing at different frequencies

with respect to one another; therefore the polarization decoheres, and can average to

zero—as will be shown.

Introducing a 10% Gaussian energy spread for a 3.8-GeV stored muon energy, the

evolution of the polarization as a function of time can be computed (Fig. 6.1). A spread

of 10%, compared to the 15–20% that may be possible in νSTORM, was used to over-

estimate the polarization. However, the polarization shown in the previous figure does

not account for muon decay. This is important since the beam is more polarized earlier

in time where the muon is more likely to decay. Therefore, for an accurate estimate

of the polarization including the effect of muon decay, the average polarization can be

determined. The average polarization is 2× 10−3—smaller than other uncertainties at
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Figure 6.1: The muon polarization evolution if the initial muons have –48% initial
polarization and an energy distribution of 3.8 GeV± 10%. The decay-weighted average
is 2× 10−3 under this assumption, where 106 muons were simulated.
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νSTORM. Similar results are seen in other NF studies [57].

Beam polarization is typically ignored in NF studies [48, 57, 96] because, as was

just seen, polarization does not affect the flux when averaged over the beam lifetime.

However, importantly, these claims have now been verified for a lower-energy NF where

these effects are more severe—but still negligible.

6.1.2 Phase-space integration

Once the neutrino spectra in Eq. (6.1) are boosted into the laboratory frame, the resulting

distributions are

d2Nνµ
d y dA

=
4nµ
πL2m6

µ

E4
µ

y2(1− β cosφ)
�

3m2
µ
− 4E2

µ
y(1− β cosφ)

�

, (6.6)

d2Nνe

d y dA
=

24nµ
πL2m6

µ

E4
µ

y2(1− β cosφ)
�

m2
µ
− 2E2

µ
y(1− β cosφ)

�

, (6.7)

where y = Eν/Eµ is the scaled neutrino energy in the laboratory frame,β =
q

1−m2
µ
/E2
µ
,

A is an area, nµ is the number of muons, and N is the number of neutrino interactions

for a neutrino flavor [97].

When computing the flux for νSTORM, the far detector approximation of a point-

source accelerator and detector is not necessarily applicable since the size of the detector

and accelerator straight (150 m) are comparable to the baseline of 2000 m. The neutrino

fluxes are computed by integrating over the decay straight, transverse beam phase space,

and detector volume. The beam occupies a 6D phase space (x , y, z, px , py , pz), and

the detector has a 5× 5 m2 cross section with the depth set by the desired fiducial mass

of 1.5 kt (∼13 m, if no air gaps). Both transverse 2D phase spaces are represented

by the Twiss parameters, which are convenient descriptions of accelerator beams. For

example, by definition, the spread in, for example, x is σx =
p

β⊥ε and the angular

divergence in x is σx ′ =
p

ε/β⊥. The Twiss parameters for this ring are α = 0 and
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Figure 6.2: The unoscillated flux of νe and ν̄µ for a (3.8± 0.38) GeV/c muon decay at
2000 m. Accelerator effects are included; see the text for details.

β⊥ = 40 m, where the 1σ Gaussian geometric emittance is assumed to be 2.1 mm

(motivated from FODO study in [50]). These optics correspond to a 3.8-GeV/c muon,

but dynamic aperture studies have shown efficient transport for off-momentum particles

(i.e., no resonances) [64]. The longitudinal phase space (z and pz) is described by

assuming uniform distributions in both z ∈ [0, 150 m]—accurate to 0.5% based on the

muon lifetime—and pz ∈ [3.8± 0.38 GeV/c].

The flux is computed by MC integration: random points are chosen within the beam

phase space and within the detector volume to determine the expected flux. This integra-

tion introduces a new computational requirement: the baseline is a variable that affects

both the oscillation probability (L/E) and the flux (L−2 geometric factor). The GLoBES

software (version 3.1.10) [98,99] that is used in neutrino factory phenomenology treats

these as separable problems and had to be modified to compute this flux, and later the

event rates and sensitivities. Specifically, GLoBES is modified such that both the flux and

oscillation probability are computed in the oscillation probability engine. The code for

the analysis is available [100] under the GPL license [101].
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Figure 6.3: The appearance oscillation probability for the “golden channel” νe → νµ
from Eq. (2.21) using the (3+1) oscillation parameters in Table 6.2. A baseline of 2 km
is assumed.

The resulting flux with accelerator effects is shown in Fig. 6.2, where Nµ = 1.8×1018

[see Eq. (4.5)] and is based on 1021 POT at 60 GeV/c. The corrections introduced

by integrating over the beam phase space are small (compare to 3.5). Given that these

differences are small, it has now been demonstrated that at short 2-km baselines, relative

to the long 7000-km baselines of other NFs, it is still reasonable to assume a point source

despite the 150-m decay straight. These accelerator effects are nevertheless included

in the subsequent calculations for completeness. (Note that integrating over the beam

phase space is important for baselines of 20 m where, for example, cross-section physics

is performed. This is beyond the scope of this thesis, but this work was published in [50].)

6.2 Oscillation probability

For a point-source baseline of 2000 m, it is possible to calculate the oscillation probability

(Fig. 6.3) using Eq. (2.21) for any combination of L and E. Computationally, the SNU
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Table 6.2: Best-fit oscillation parameters for the (3+1) sterile neutrino scenario using
combined MB ν̄ and LSND ν̄ data [104].

Parameter Value
∆m2

41 [eV2] 0.89
|Ue4|2 0.025
|Uµ4|2 0.023

Table 6.3: Values for 3× 3 oscillations used. Normal hierarchy is assumed. The values
are in agreement with current best-fit values (Table 2.1).

sin2 θ12 = 0.319
sin2 θ23 = 0.462
sin2 θ13 = 0.010
∆m2

21 = 7.59× 10−5 eV2

∆m2
31 = 2.46× 10−3 eV2

(version 1.1) add-on [102, 103] has been used to extend computations in GLoBES to

4× 4 mixing matrices.

The best-fit parameters for the “short baseline anomaly” [104] (see Table 6.2) and

3×3 mixing [i.e., sin2(2θ13),∆m2
12, etc.] (see Table 6.3) are used throughout the analysis,

and agree with those published by the LSND Collaboration [105]. For completeness,

oscillations between known mass eigenstates are included, despite not influencing the

sensitivity; the correction was computed to be on the order of 10−5 in this analysis.

The best-fit data from [106] is used to specify standard 3 × 3 oscillations. Without

loss of generality, a normal hierarchy is assumed. As a cross check, errors on the 3× 3

mixing matrix were included in the analysis and these are negligible; they affect the

oscillation probability at much less than the 10−5 level. Though a more complete analysis

is performed here, a two-flavor analysis would have been sufficient.

To understand the convolution of the flux with this oscillation probability, the un-

oscillated and oscillated fluxes are shown in Fig. 6.4. Interestingly, the shapes the νe

unoscillated, νe disappearance, and νe → νµ appearance at the LSND best fit spectra

are similar. This is true throughout all LSND-motivated ∆m2
41 values, and was due to

(remember Fig. 6.3) the majority of the neutrino energy spectra being at the tail of
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Figure 6.4: The flux at the far detector for a (3.8 ± 0.38) GeV/c stored µ+ beam for
initial νe states including averaging over the beam envelope and detector volume. Final
states include νe without oscillations and both νe and ν̄µ with best-fit, short-baseline
oscillations. The normalization is 1021 POT. The dip in the oscillated appearance signal
at 0.7 GeV corresponds to the first minimum of the oscillation probability (see Fig. 6.3).
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the oscillation probability. At first glance, this would appear disadvantageous; however,

there are more effects that depend on L and E than just the oscillation probability. For

example, including all effects such as the L2 solid angle, E2 opening angle, and E from

neutrino cross sections makes 2 km the optimal baseline and 3.8 GeV an optimal energy

(as will be seen later).

6.3 Cross section: σ

Cross sections are required for each neutrino flavor (νµ, ν̄µ, νe, ν̄e) and each interaction

type (CC or NC). The nucleon cross sections (Fig. 6.5) for an isoscalar target are calcu-

lated in [12] and [107] for low and high energies, respectively. The νSTORM target is

mostly iron, which is modeled as 56Fe (Z = 26, A = 56) since this isotope constitutes

91% of the natural abundance, and can be approximated as isoscalar, which introduces

a 5% error that is much less than the cross-section uncertainty discussed later. NC cross

sections are flavor independent, and the neutrino NC cross section is about twice the

antineutrino NC cross section. The CC cross sections are approximately flavor inde-

pendent; Fermi’s Second Golden Rule results in the same matrix elements and, at these

energies, the phase spaces for the final-state electrons and muons are roughly equal.

Differences do arise from structure functions being suppressed by powers of the lepton

mass and, at lower energies, threshold and radiative effects [108], but these effects are

small in this context. The CC cross section for neutrinos, in the DIS region, is twice that

of antineutrinos, and is approximately three times the respective NC cross section.

At present, only the nucleon cross section σnucleon is known; therefore, the number of

nuclei Nnuclei needs to be known to determine the total cross section σ = Nnuclei×σnucleon

before the interaction rate Nint = σφ can be determined. The fiducial mass of 1.5 kt =

1.5×109 grams determines the number of nucleons via Avogadro’s number NA = 6×1023:

Nnuclei = 1.5×109×6×1023 = 9×1032. Fiducial mass uncertainties should be less than
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Figure 6.5: Neutrino–nucleon cross sections for an isoscalar target as a function of
neutrino energy for CC and NC interactions.
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1%, and thus are ignored.

6.4 Interaction rates: Nint

The number of neutrino interactions is computed, which does not require assumptions

about the detector technology. The interaction rates can be computed by

Nint = Φ× Peµ ×σ (6.8)

= Φ× Peµ ×σnucleon × Nnuclei (6.9)

for fluxΦ, oscillation probability (Prob), and cross sectionσ, where all of these quantities

have been computed in the previous sections.

Using the LSND anomaly best fit parameters (Table 6.2) as an example sterile neu-

trino signal, the event rates for µ+ and µ− decays are shown in Table 6.4. Assuming

1.8× 1018 decays, with either stored µ+s or stored µ−s, the statistical significance of all

channels is greater than 10σ. Combining the NC channels together results in a statisti-

cal significance of 20σ and 17σ for stored µ+ and µ−, respectively. However, these 6̃%

disappearance measurements will be systematically limited due to the 1% normaliza-

tion uncertainty. Neither νe → νµ CC nor ν̄e → ν̄µ CC interactions have backgrounds

from other oscillations with similar final states, except for negligible atmospheric-term

oscillations; therefore the backgrounds will be misidentifying interactions arising from

nonsignal oscillation channels.

With the disappearance signals, it is not possible in the experimental setup described

above to make any useful measurements. As has been discussed, a near detector has not

been assumed for the appearance analysis and the uncertainties this introduces makes

it impossible to measure these 6% deficits. The flux uncertainties are conservatively

expected to be a few percent, unlike the typical NF assumption of 0.1%. Therefore, it

is not clear whether or not these disappearance channels could be probed in a MIND
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Table 6.4: Interaction rates for 1021 POT and 1.5 kt target mass for the no-oscillations
and short-baseline oscillations described by Table 6.2. The statistical significances are
computed. The combined statistical significance of NC events are 20σ and 17σ for
stored µ+ and µ−, respectively. No physics backgrounds exist for νe→ νµ CC interactions.
Question marks indicate that there will be a nonzero number of events, where the exact
value requires further work.

Channel Nnull Nosc. Difference (Nosc. − Nnull)/
p

Nnull

µ+

νe→ νµ CC 0 332 ∞ ∞
ν̄µ→ ν̄µ NC 50073 47679 –4.8% –10.7
νe→ νe NC 78805 73941 –6.2% –17.3
ν̄µ→ ν̄µ CC 128433 122322 –4.8% –17.1
νe→ νe CC 230766 216657 –6.1% –29.4

π+
νµ→ νµ CC ? ? ? ?
νµ→ νe CC ? ? ? ?

µ−

ν̄e→ ν̄µ CC 0 117 ∞ ∞
ν̄e→ ν̄e NC 32481 30511 –6.1% –10.9
νµ→ νµ NC 69420 66037 –4.9% –12.8
ν̄e→ ν̄e CC 82589 77600 –6.0% –17.4
νµ→ νµ CC 207274 197284 –4.8% –21.9

π−
ν̄µ→ ν̄µ CC ? ? ? ?
ν̄µ→ ν̄e CC ? ? ? ?

detector. For channels other than muon disappearance, there is the added difficulty of

separating νe CC and NC event; one could perform an analysis that only looked at short

tracks, but even ignoring the muon CC backgrounds, the flux uncertainties once again

make this measurement insensitive. Probing disappearance channels requires a near

detector, and possibly also a LAr TPC, to extract all the potential physics from this beam.

However, this is beyond the scope of this thesis since only the appearance channel is of

interest here.

The number of events can also be determined as a function of energy since the

evolution of ρ,σ, and (Prob) as a function of energy is known. These event distributions

are shown in Fig. 6.6.

Numerous channels probe the sterile neutrino parameter space. Most other exper-

iments have one or two channels to explore (see Table 2.3 for list of experiments),

whereas in the best case νSTORM allows for 14 signals (Table 6.4).
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(c) µ+ disappearance with stored µ+.
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(d) µ− disappearance with stored µ−.

Figure 6.6: Interaction rate energy distributions assuming the LSND anomaly best-fit
values (Table 6.2), 1021 POT, 1.5 kt of detector, a baseline of 2 km, and 3.8-GeV stored
muons. The transitions νe→ νµ, ν̄e→ ν̄µ, ν̄µ→ ν̄µ, and νµ→ νµ are shown.
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Figure 6.7: Event rates after cuts vs true neutrino energy.

6.5 Event rates after cuts

The energy-dependent interaction rates can be convolved with the detector performance

to yield the measured neutrino total rates. The detector performance information is con-

tained within the efficiency curve (Fig. 5.15). As seen in Fig. 6.7, applying these efficiency

curves to the example interaction rates shown in Table 6.4 results in 61 signal and 5

backgrounds. The subsequent sensitivity analysis is a total rate analysis; an analysis that

included shape information will not greatly improve the sensitivity since the oscillation

maximum is below the energy threshold of the detector.

6.6 Statistics

It is necessary to determine if the number of events observed after cuts is statistically

significant. In this section, statistics will be reviewed to explain later work. More specif-

ically, a χ2 test statistic is derived that can be used in the sensitivity analysis since the

experiment must reject the null hypothesis, accounting for statistical fluctuations.
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The hypothesis of no oscillations H0 is the null hypothesis and H1 the alternate

hypothesis. These hypotheses have oscillation parameters associated with them: let

Θ0 = {∆m2
41, sin2 2θeµ} be the oscillation parameters associated with H0, and similarly

Θ1 for H1.

The test statistic X is a function of the experimental observations and let w be the

values of X that suggest that the null hypothesis H0 is not true. It is desirable to have a

small probability of X—by statistical fluctuations alone—taking a value in w when H0

is true. A level of significance α can be defined

P(X ∈ w|H0) = α, (6.10)

where α corresponds to, colloquially, “5σ” when α ' 2.8× 10−7 and “10σ” when α '

7.6× 10−27. The number of “σ” corresponds to the p value of having a greater than nσ

upward fluctuation of a Gaussian centered at zero.

The test statistic used for hypothesis testing is the likelihood ratio test. For this total

rates analysis, there is only one observation that is designated X and has a probability

distribution function f (X |Θ). The likelihood function is

L(X |Θ) = f (X |Θ) (6.11)

= e−λλX/X !, (6.12)

where λ is the expected number of events with X actual events, and depends on Θ.

The distribution is Poisson because the background levels are small. The short-baseline

parameters Θ1 for H1 are free to take any value, but the parameters Θ0 are fixed to zero

by the null hypothesis requiring no oscillations. The likelihood ratio test defines a test

statistic λ such that

Λ=
L(X |Θ0)

maxΘ1
L(X |Θ1)

, (6.13)
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where the denominator is maximized with respect to Θ1 and the numerator remains

fixed. Using Eq. (6.12) leads to

Λ= e−λ+X (λ/X )X . (6.14)

From Wilks theorem, with enough statistics, the χ2 can be defined as χ2 = −2 lnΛ

(see [109]), which is preferable to usingλ because of floating-point precision considerations—

multiplying numbers in a computer compounds the floating point errors. Using this

definition, one finds

χ2 = −2 lnΛ= 2
�

λ− X + X ln
�

λ

X

��

, (6.15)

which has as many degrees of freedom as Θ1 has parameters since the numerator of

Eq. (6.13) has no degrees of freedom, and the denominator allows Θ1 to take any value.

Within this analysis, there are only two degrees of freedom given thatΘ0 = {∆m2
41, sin2 2θeµ}.

Sometimes when a χ2 is defined as above it is called a∆χ2 since it refers to how adding

parameters affects the goodness of fit of the model. Adding parameters will always

improve a fit because the “noise” within the data will be fit; however, adding sterile neu-

trino parameters should improve the fit beyond what would be expected from statistical

fluctuations alone.

6.7 Appearance sensitivity

The parameters to be explored in the appearance analysis are ∆m2
41 and sin2(θeµ) =

4|Ue4|2|Uµ4|2. Contours in the neutrino parameter space ∆m2
41 vs sin2(θeµ) can be used

to compare the sensitivities of various proposed short-baseline experiments.

Care must be taken when defining χ2(∆m2
41, sin2(2θeµ)) to ensure that it is well de-

fined. In the (3+1) scenario, the signal νe→ νµ depends on the amplitude sin2(2θeµ) =
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Figure 6.8: Sterile neutrino sensitivity using a statistical χ2 of the appearance channel
νe→ νµ assuming 1021 POT, a stored µ+ beam, and 1.5 kt detector at 2 km. This channel
is the CPT of the LSND anomaly ν̄µ → ν̄e. In this frequentist study, sensitivity to the
LSND and MiniBooNE 99% confidence interval [104] is 10σ.

4|Ue4|2|Uµ4|2 and oscillation frequency ∆m2
41 [Eq. (2.21)]. If there is an appearance sig-

nal, then |Ue4|2|Uµ4|2 6= 0, which implies that both Ue4 and Uµ4 are nonzero, resulting in

disappearance. The disappearance of CC νe and NC backgrounds [Eq. (2.18)] affects the

background estimation. However, by not oscillating the backgrounds (e.g., ν̄µ → ν̄µ),

the backgrounds are overestimated and the degeneracy avoided.

The statistical χ2 is computed using the definition from the previous section. As can

be seen in Fig. 6.8, there is over 10σ sensitivity to the entire LSND and MiniBooNE 99%

confidence interval.
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Figure 6.9: Baseline optimization using a total-rates statistics-only χ2. On this plot,
νSTORM’s current baseline corresponds to 3.8 GeV and 2 km for the Fermilab siting.

6.8 Optimizations

It is important to understand how varying experimental parameters affects the sensitivity.

For example, if there are site constraints, can the far detector be moved? Or if the charge

misidentification is worse than expected, can this be compensated by building a better

accelerator? These questions will be addressed now.

The optimization of baseline and energy seen in Fig. 6.9 allows one to change the

baseline depending on site constraints or lower the energy of the ring if the accelerator

gets too expensive. Interestingly, this shows that for a fixed baseline, increasing the

muon energy is always advantageous. This effect arises because the maximum of the νe

flux is not at the oscillation maximum but rather at a higher energy. As an illustrative

exercise, at high energies the oscillation probability is

Pr[νe→ νµ] = sin2(2θeµ) sin
2

�

∆m2
41 L

4E

�

(6.16)

' sin2(2θeµ)

�

∆m2
41 L

4

�2

E−2. (6.17)
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Figure 6.10: An optimization between the detector performance and accelerator per-
formance using the charge misidentification rates and number of muon decays as the
performance metric. IDR refers to the interim design report [57] expected detector
performance. MINOS refers to their published performance. FODO refers to the FODO
lattice design that gives 1.8× 1018 useful muon decays, while FFAG refers to the FFAG
design that gives 4.68× 1018 useful muon decays. Both accelerators assume a front end
of the main injector at 60 GeV/c for 1021 POT.

The oscillation probability decreases as E−2 for a fixed baseline. However, the signal

rates increase as E3: there is a factor of E2 from the solid angle arising from the 1/γ

opening angle, and another factor of E from the cross section. Or rather:

N = σ× Peµ ×Φ (6.18)

∝ E × E−2 × E2 (6.19)

∝ E (6.20)

The conclusion is that raising the stored muon energy will increase the event rates

linearly with energy for a fixed baseline. As the event rates increase so do the background

rates; therefore, the sensitivity only increases as
p

E. This effect has been noticed by

similar analyses for other muon-decay-based facilities (see sensitivity work in [57]).
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Even though the charge misidentification was derived on p.p. 51, understanding how

the performance of νSTORM changes as this efficiency changes is important. Unlike the

range cut, which has been used in numerous experiments, no neutrino experiment has

been as reliant on the successful identification of muon charge—but collider experiments

have demonstrated even better muon-sign discrimination, and even 10−4 electron-sign

discrimination at these energies [110]. Accordingly, the charge misidentification rate is

varied against the number of stored muons in Fig. 6.10. As can be seen, a reasonable

number of muons using either the FODO or FFAG accelerator designs allows for enough

statistics that there are reasonable requirements on the charge misidentification. For

example, even if the charge misidentification rate was the same as MINOS [111], which

has a much lower field and thicker plates, νSTORM could still make a 7σ detection

of sterile neutrinos. However, based on the earlier arguments here and also estimates

from the NF IDR, 10σ should be possible. These numbers will be further defended in

Sec. 7.1.4, where uncertainties on the multiple scattering model are further discussed.

6.9 Summary

Using the detector performance work from the previous chapter and defining a χ2,

the sensitivity of νSTORM is 10σ across the LSND 99% confidence interval using only

appearance information. Effects such as those related to the length of the accelerator

straight have been included. Every step of the calculation—flux, oscillation probability,

interaction rates—was shown to demonstrate the conservativeness of these estimates.

Also, optimizations have been shown for the appearance channel sensitivity allows for

variations on the experimental design. What remains to be done is ensuring that the

systematic uncertainties and external background rates are as small as assumed, which

will be shown in the subsequent chapter.
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Chapter 7

Systematics and External Backgrounds

In the previous chapter, a statistical sensitivity analysis was performed, and demonstrated

that νSTORM was sensitive to sterile neutrinos over the entire 99% C.L. indicated by

LSND. However, the only claim made in the text so far is that the uncertainties should

be small per other NF studies. Motivation for why this should be true was given, but

these assertions need to be defended further. This is the first comprehensive estimate

on what the systematic uncertainties should be for a muon-decay beam. In addition to

the systematic discussion, external background rates from atmospheric neutrinos and

cosmic rays will be computed. Afterward, a systematic χ2
sys will be defined that includes

both the systematics and external background information, before a sensitivity plot using

χ2
sys is shown.

7.1 Systematics

Systematic uncertainties must be identified and estimated, and the relevant ones here

are:

1. hadronic and electromagnetic models,

2. magnetic field and steel, and
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3. flux and cross sections.

After estimating the systematic uncertainty, the sensitivity was recomputed to deter-

mine the size of the effect. The physical nature of the cuts that have been used to extract

the appearance signal eases assessing their impact. All of these systematics have been

considered by MINOS and, in the end, they were shown to be small [112]. What must

be shown is that, roughly, the five expected backgrounds do not have an uncertainty

large enough to reduce the significance of the 61 signal; therefore, even background

uncertainties of 100% will not affect the appearance analysis.

7.1.1 Hadron and electromagnetic models

Hadronic model uncertainties (e.g., π+N reactions) are one of the dominant sources of

systematic uncertainty for this type of detector and are not as well understood as elec-

tromagnetic models due to uncertainties arising from non-perturbative hadronization.

Uncertainties in how, for example, pions are created from hadronizing quarks lead to

uncertainties everywhere from targets for neutrino beams to calorimeters at a toroidal

LHC apparatus (ATLAS).

Accordingly, experimenters typically put their calorimeters into test beams in order

to measure their energy scales and particle response. For example, the Tile Calorime-

ter of ATLAS [113], CDF Endcap [114], CMS HCAL [115], and CDHS prototype [116]

were all put in test beams. Both CERN and Fermilab have dedicated beam lines for this

purpose. However, those experiments all operated at energies greater than 10 GeV—far

beyond the energy range of interest for MINOS and thus νSTORM—which is why MI-

NOS, whose energy range is 1–10 GeV, built the MINOS calibration detector (CalDet) at

CERN. (Details can be found in [117–119].)

The CalDet was a scaled-down—yet unmagnetized—model of the MINOS detector

that was built in order to understand the detector response in the 0.2–10 GeV/c mo-

mentum range for hadrons, electrons, and muons. This detector was put into the T11
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Figure 7.1: Data and MC comparison for π+ and π− hit-plane multiplicity in CalDet.
Data collected from T11 are shown shaded, pions simulated with G C A L O R are shown
in blue, and pions simulated with S L A C -G H E I S H A are shown in red. Plots taken from
thesis of Kordosky [118].
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and T7 test beams in the CERN PS East Hall between 2001 and 2003. Time-of-flight

and Čerenkov counters were used to identify the particle species, and the worst con-

tamination was a 2.3% leakage of electrons into the pion sample at 10 GeV/c. The

experimenters calibrated G M I N O S—based on G E A N T 3—with this CalDet data. Two

models were tested against the data: S L A C - G E I S H A and G C A L O R. The mean and RMS

of the models agree with the data within ±15% over the energy range of interest for

νSTORM (Fig. 7.1), which indicates that the simulation used for νSTORM should be

correct to that level.

MINOS also noted a difference in the muon range between simulation and data. Part

of the discrepancy was explained by a deficiency in how G E A N T treated the density

effect, which caused the 〈dE/d x〉 to be overestimated by 2%. Even accounting for this

effect, in the data the muons appeared to be 3–4% longer than in the MC simulations.

Applying this information to νSTORM, the systematic errors indicated by the MINOS

CalDet should result in uncertainties of ±4% for muon range and ±15% for pion ranges.

A test-beam prototype, like CalDet, will be constructed for νSTORM as well. In addition

to testing various physics models in the software, it is useful to determine calibration

procedures and test the analysis chain. Also, which is less relevant to systematics, such

an exercise will help understand the engineering integration. Before νSTORM is able

to be built, these uncertainties should become smaller since the advanced European

infrastructure for detectors at accelerators (AIDA) project at CERN will improve upon

the physics models relevant to νSTORM by building a MIND-like detector.

7.1.2 Magnetic field and steel

The knowledge of magnetic field is important because pB
⊥ is linear in B [Eq. (3.9)]. The

systematic uncertainty arising from magnetic field errors is considered. Knowledge of the

effective magnetic field is dependent on the knowledge of the steel, and experience from

the MINOS experiment [45] can be extrapolated to νSTORM. The composition of the
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Table 7.1: MINOS steel specifications per [120]. The flatness specification is half the
ASTM A6 specification.

Quantity Thin plates Thick plates
Thickness [inch] 0.5 1
Thickness [mm] 12.7 25.4

Finished plate width [mm] 2000 3810
Finished width tolerance [mm] ±0.76 ±0.76
Flatness over any 12 ft [mm] 8 14.5

Thickness tolerance [mm] +0.8
−0.254

+1.8
−0.254

Waviness over full length [per 8 m] 8 waves 8 waves

steel will be well known. Any impurities can be below the 0.5% level by weight. MINOS

made its steel plates from low-carbon, hot-rolled steel (AISI 1006 designation); the

tolerances are satisfactory for νSTORM, with a flatness at half the ASTM A6 specification

(Table 7.1). At each foundry run it will be possible to take block samples and measure

an average steel density with an uncertainty of 0.3%. Each plane after construction can

be weighted and the thickness measured. The variation of thickness should be negligible

at ±0.3%, based on experiences with MINOS ultrasound thickness measurements. Also,

the hysteresis (i.e., B-H) curve variation between steel plates was shown to be negligible.

Plane-to-plane magnetic field variations can occur from mechanical and chemical

nonuniformity, but MINOS was able to get the field uncertainty at any given point to

less than 3% [44]. Accordingly, the uncertainty in the integrated field which the muon

encounters should be small. It is also possible to measure the B-H curve of the steel

and perform a finite-element analysis with A N S Y S. The current through the STL will

be known to better than 10−4 by using current shunts at the power supply. Finally, a

global absolute calibration may be possible by comparing the range vs curvature of

cosmic-ray muons. Whatever magentic fluctuations exist should partially cancel, given

that the muons will sample many plates.
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7.1.3 Flux and cross sections

Flux and cross-section uncertainties provide a major source of uncertainty for conven-

tional beams, but these uncertainties should be less at νSTORM. The optimistic assump-

tion is that the flux can be measured to 0.1%, which is motivated from the 25-GeV

NF work in [57]. Beam instrumentation—wire scanners, polarimeters, BCTs, and beam-

position monitors (BPMs)— is used for flux measurements (previously discussed in

Sec. 4.3.1). Ideally, the same instrumentation that is being considered for an NF should

be used as a technology demonstration; however, the low beam current may provide

difficulties. Therefore a conservative estimate of the flux normalization uncertainty is

1–3% based on conversations with beam instrumentation experts at CERN [121].

Cross-section uncertainties are infamous for complicating neutrino oscillation exper-

iments. With νSTORM, the small flux uncertainty actually results in—in addition to the

work presented here—a complementary experimental cross-section program that should

be able to help νSTORM. However, such a program is not assumed for this analysis. The

uncertainties without a near detector should be 10% for both QE and RES, and 5% for

DIS [57,122]. However, experiments such as MINOS measure the axial mass MA, which

is a parameter of the form factor, GA(q2) = gA

(1− q2

M2
A
)2

, that encodes the nucleon structures,

at the near detector and attempt to extrapolate the flux to their far detector. Axial mass

uncertainties are O (10%) [123], however this uncertainty only translates into a 2%

normalization uncertainty on the observed neutrino-energy spectrum [124]. MINOS is

able to predict the product of flux and cross section with an uncertainty of 4% [125] at

their near detector.

The key advantage to νSTORM over other proposals is that it is able to reduce the

cross-section uncertainties for appearance channels to the level of uncertainty typically

associated with disappearance measurements—other neutrino experiments cannot mea-

sure their appearance signal at a near detector. At νSTORM, both
(−)
νe and

(−)
νµ are in the

beam, and if the decay ring can run in stored-µ+ mode and stored-µ− mode, then all
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of these cross sections can be measured. Muon decay results in muon neutrinos, which

also happens to be the signal from νe→ νµ.

The flux uncertainty here is less than MINOS since the advantage of a muon-decay

beam is the ability to better predict the flux, and cross section measurements better

than MINOS should be possible for similar reasons. Therefore, it is conservative to

assume a 4% uncertainty on the product of flux times cross section for the signal. For

the appearance physics, the signal uncertainty is small because the physics behind CC

QE and CC DIS is well understood.

However, background uncertainties are larger because backgrounds, such as pions,

are produced by mechanisms such as resonant production, which are not as well under-

stood. Therefore, background uncertainties will remain large and range from 20% to

40% [124], assuming they cannot be measured effectively in a MIND detector. These un-

certainties may be further constrained with a complementary cross-section measurement

program at νSTORM; however, these other experiments are not required.

A 4% and 40% normalization uncertainty is assumed for signal and background,

respectively. The difference between signal and background is attributable to the differ-

ence in understanding of the neutrino–nucleon interaction physics. These uncertainties

are derived from the experience and performance of existing experiments; therefore

they may be decreased as future experiments improve the understanding of cross-section

physics. However, both uncertainties are small relative to what is required of νSTORM.

7.1.4 Multiple scattering model

The level to which the muon charge can be identified is critical for sensitivity to sterile

neutrinos. As was mentioned in Sec. 6.8, this level of background rejection has only been

demonstrated experimentally at experiments such as ATLAS, where the muon energies

are much higher than the 2 GeV considered here. However, the performance of the charge

identification at 2 GeV using a MIND detector should be determined experimentally at
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the νSTORM near detector. With 106 events at the near detector that should not have

oscillated, there are enough statistics to set a 10−4 limit on the charge identification. By

turning off the magnetic field, it should be possible to align the detection planes more

than is required for this study.

There are two types of scattering that need to be addressed: hard scattering and

multiple scattering. Hard scattering is also known as Rutherford scattering, where the

muon scatters off of the nucleus (without seeing quark constituents), which has been

modeled since 1911 [126]. This formalism assumes only one scatter. There can also

be multiple Coloumb scattering, which can be derived from the Rutherford scattering

model if there are numerous scatters [127]. Effects such as the electrons screening the

charge of nucleus must be included. However, both of these models of scattering require

only the classical picture of Rutherford scattering, which is well established.

These models were tested extensively in the 1950s with data on cosmic ray muon

interactions [128]. The energy range that was explored included the range of interest

at νSTORM: 1 to 4 GeV. Some anomalies were appearing in the larger q2 data since it

was not known that nuclei had quark constituents. Measurements of 2 GeV muons on

carbon and lead were performed using an accelerator beam with a claimed purity of

10−6 [129], where no deviations from the Rutherford and Coloumb formalisms were

found. Numerous other experiments have been performed (see, e.g., [130] for review)

but no anomalies have been found in the low-q2 region that νSTORM is considering.

It is nevertheless true that νSTORM requires better charge identification that has

been previously performed with 2-GeV muons. Based on previous experiments, it is

reasonable to assume that no new anomalies will be discovered (new physics?) that

reduce the sterile sensitivity. However, if an anomaly is discovered then there are two

possible situations. Either the scattering is soft but more than expected, and the near

detector is able to measure this. Or the scattering is hard Rutherford scattering and will

appear as an observable (and rejectable) kink in the path of the muon. There is every
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Figure 7.2: Detector cracks. Green corresponds to the pixels formed by 1-cm scintillator
bars using both the x and y views. The white between the bars is a 0.2 mm gap.

reason to believe that these semi-classical models apply to νSTORM, and by measuring

these models at νSTORM these assumptions can be checked.

7.2 External backgrounds

Backgrounds can arise from physics occurring outside the detector, which can potentially

fake a wrong-sign muon. Three types of backgrounds are discussed: beam interactions

with upstream material, atmospheric neutrinos, and cosmic-ray muons. Modest fiducial

cuts are able to remove all of these backgrounds.

As seen in Fig. 7.2, there are “cracks” between the scintillator bars; therefore, before

one can understand the efficacy of fiducial cuts, the detector cracks must be understood.

There is a 100-µm layer around each scintillator bar that is reflective. Between any

two 1-cm-wide bars is a 200-µm gap. Assuming muons had momentums perpendicular

to the measurement plane, the area corresponding to the gap is (200 µm)2. This as a

percentage of the total area is (200 µm)2/(200 µm+ 1 cm)2 ' 4× 10−4. Offsetting the

bars between layers is required such that a muon that gets through the cracks will hit
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Figure 7.3: Sketch of fiducial cuts. Not to scale.

the center of the pixel in the next layer. The probability of a muon traversing two offset

layers and going through the cracks is less than (4× 10−4)2 = 1.6× 10−7.

The SiPM hit efficiency is better than 90% for minimally-ionizing particles (MIPs).

Assume a conservative 10% uncorrelated chance per bar that the particle is not detected.

Requiring four modules to be traversed—eight scintillator bars—results in a probability

of (10%)8 = 10−8 and is sufficient.

The Poisson probability that a muon traverses a bar without the electronics reg-

istering a hit is also small. Assuming a conservative mean number of photoelectrons

expected in a bar when a muon crosses is over 20 pe. The cut on noise is 2 pe; therefore

the probability, assuming a Poisson distribution, of detecting less than or equal to 2 pe

is 4× 10−7. Requiring eight scintillator bars to be hit makes this probability negligible.

Muons entering the detector can be rejected at the 10−8 level by vetoing on the eight

outmost scintillator bars. As seen in Fig. 7.3, the upstream fiducial cut is 16 cm and the

fiducial cuts on the sides are 8 cm.
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Table 7.2: Material properties surrounding the DAB [2,132]. Estimates for the range in
till are shown.

Liquid water Till Limestone Std. rock

〈Z/A〉 0.55 0.4955 0.5
Mean excitation energy [eV] 75 136.4 136.4
Density [g/cm3] 1.0 2.12 2.8 2.65
Range 4 GeV µ [g/cm2] 1.8× 103 ≈ 2× 103 2× 103 2.1× 103

Range 4 GeV µ [m] 18 ≈ 9.5 7 8

7.2.1 Beam interactions with upstream material “rock muons”

Having computed the probability of an external muon penetrating the fiducial volume

unnoticed, it is now possible to explore the “rock muon” example. The neutrino beam

will interact with the material between the near and far detectors before emerging into

the front of the far detector. If any of these muons slip through calorimeter cracks or

hits are not registered, then these muons could be backgrounds for physics analyses.

The material composition on the Fermilab site is well known due to previous con-

struction projects on the site. Below the topsoil is 15 m of glacial till and then the

bedrock [131]. The far detector hall (i.e., the DAB) is surrounded by glacial till with den-

sity between 2.12 and 2.32 g/cm3 [132]. The density-independent range in till should

have the lower limit of water and upper limit of standard rock (Table 7.2). These density-

independent ranges are similar and therefore the range 2× 103 g/cm2 is also used for

till. Accordingly, 4-GeV muons are anticipated to penetrate 9.5 m of till.

Given this range, consider a cuboid of size 9.5 m ×π×(2.5 m)2, which corresponds to

a target mass of about 0.4 kt. Muons that interact within this target mass can penetrate

the far detector, and to overestimate the background all muons are assumed to enter the

detector. The till mass is the same order of magnitude as the detector mass; therefore,

there will be comparable numbers of neutrino interactions. These interactions must be

rejected to the same level to which other backgrounds were rejected: O (10−6). Given

the 10−8 background rejection using the fiducial cut mentioned above, rock muons will
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Table 7.3: Duty factor and atmospheric neutrino rates. The duty factor is understood
under different assumptions as to how the proton beam from the MI is extracted. The
muon beam in the decay ring is dumped after 76 µs (i.e., 3γτ).

Extraction Rep. rate Duty factor Atmos. ν events
Fast kicker; two MI bunches 1.2 s 6× 10−5 0.01
Slow kicker; entire MI fill 12 s 6× 10−6 0.001

not present a problem based on the fiducial cuts described above.

7.2.2 Atmospheric neutrinos

Cosmic rays, which are energetic extraterrestrial protons (90%), helium (9%), and heavy

nuclei (< 1%), interact with the Earth’s atmosphere to produce pions. Pions and muons,

upon decaying, will produce atmospheric neutrinos in the energy range of interest.

Interactions of the atmospheric neutrinos within the detector can be rejected using

timing and directional information. The Barr-Gaisser-Stanev model of the atmospheric

neutrino flux is used [133]. For our energies of interest, the effects of the solar cycle

can be ignored. Using the tables in [133], a 10-kt-years exposure (2-kt detector for 5

years) results in 74 ν̄µ CC and 156 νµ CC interactions above 2 GeV. These rates agree

with those seen by MINOS, which also resides in the American Midwest.

Atmospheric neutrinos should be negligible for νSTORM [111] once reasonable cuts

are applied. A timing cut alone reduces the background rate to the <1 levels by taking

advantage of the duty factor of the machine (Table 7.3). The duty factor depends on

how the proton beam is extracted from the MI but is about 10−5 and 10−6 for fast and

slow extraction, respectively, if the muon beam is only used for three lifetimes. Counter-

intuitively, a slow kicker is preferred. The expected number of atmospheric neutrinos is

at most 0.01 events.
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Figure 7.4: The overburden surrounding the DAB pit. The detector is assumed to be 4 m
below the surface. Cosmic-ray muons may either enter the detector from the unexposed
top (muon 1) or from the sides (muon 2). Muons entering from the side will travel
through rock, which introduces an energy threshold for shallow angles.

7.2.3 Cosmic-ray muons

Only muons with energies below 2 GeV decay before arriving at the Earth’s surface.

Therefore, there are energetic muons (>2 GeV) that must be rejected from the appear-

ance analysis. MIND detectors have, nevertheless, been used on the surface before by

experiments such as CDHS. The calculation of cosmic-ray muon rates extends those for

the MINOS near detector [134] and are an order of magnitude estimate.

The detector is in the DAB pit, where the top of the detector is approximately 4 m

below the topsoil (Fig. 7.4). Given that the energy threshold of the detector (2 GeV)

corresponds to 4 m of till (see Table 7.2 for further material information), the anticipated

geometry of the ground around the detector can be approximated as if the detector were

covered by this 4 m of till.

The Gaisser expression [136] is used to model the muon flux. However, this expres-

sion overpredicts the <10-GeV muon flux and can be corrected by using the modified

Gaisser formalism (Fig. 7.5). For clarity and conservativeness, this study will use the
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Figure 2: Relation of the observed zenith angle of muons to the zenith angle at production at
the top of the atmosphere. R is the radius of the earth. [4][5]
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Figure 3: The best-fit result to the experimental data. From this figure, the modified formula
could fairly match the experimental data in di↵erent zenith angles with energy higher than
several tens GeV . The data are quoted from [6] [7] [8] [9] [10].

4

Figure 7.5: A comparison of the Gaisser formalism and the modified Gaisser formalism.
Figure reproduced from [135].
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Gaisser formalism that predicts twice the number of atmospheric muons at lower ener-

gies. The differential muon energy spectrum at the surface is

dN
dE
= 0.14E−2.7

�

1

1+ 1.1E cosθ
115 GeV

+
0.054

1+ 1.1E cosθ
850 GeV

�

(7.1)

in units of muons/cm2/sec/sr/GeV, where θ is the zenith angle of the muon and E is

measured in GeV. The two terms in the brackets are approximately unity below 10 GeV:

dN
dE
= 0.14E−2.7. (7.2)

The required muon energy to reach the detector without decaying will increase as

the zenith angle increases, since the muon must penetrate more rock and atmosphere.

Approximating the Earth as flat, the energy threshold is Emin/ cosθ ; therefore the angular

distribution underground is

dN
dΩ

=

∫ ∞

Emin/ cosθ

dN
dE

dE (7.3)

=
0.14
1.7

�

cosθ
Emin

�1.7

(7.4)

= 0.082
�

cosθ
Emin

�1.7

muons/cm2/sec/sr. (7.5)

To determine the number of muons that penetrate the detector, the integral must be

calculated for each of the faces of the detector. Faces may either be horizontal or vertical
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Table 7.4: Cuboid parameters for computing cosmic-ray rates.

Dimensions (m3) Ah (m2) Av (m2) Rh (Hz) Rv (Hz) Total (Hz)
5× 5× 13 65 180 273 203 476

and have a flux dN/dAh or dN/dAv, respectively, where

dN
dAh

=

∫ 2π

0

∫ 1

0

cosθ
dN
dΩ

d(cosθ ) dφ (7.6)

= 2π

∫ π/2

0

cosθ
dN
dΩ

sinθ d(θ ) (7.7)

= 2π

∫ π/2

0

cosθ

�

0.082
�

cosθ
Emin

�1.7
�

sinθ d(θ ) (7.8)

=
0.082× 2π

E1.7
min

�

−1
3.7

cos3.7(x)
�π/2

0
(7.9)

=
0.082× 2π

E1.7
min

1
3.7

(7.10)

= 4.2 muons/m2/sec (7.11)

and

dN
dAv

=

∫ π/2

−π/2
cosφ

∫ 1

0

sinθ
dN
dΩ

d(cosθ ) dφ (7.12)

= 2

∫ π/2

0

sinθ
dN
dΩ

sinθ d(θ ) (7.13)

= 2

∫ π/2

0

sinθ

�

0.082
�

cosθ
Emin

�1.7
�

sinθ d(θ ) (7.14)

= 1.13 muons/m2/sec. (7.15)

where Emin = 2 GeV and dN/dAv is computed numerically since the solution involves

hypergeometric functions.

With the fluxes computed for vertical and horizontal surfaces it is possible to deter-

mine the number of muons incident upon the detector. Defining a cuboid containing

a 2-kt detector with 2.5-m radius plates allows for the rates to be computed for each
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surface the muon first penetrates (Table 7.4).

The rates are manageable at 476 Hz. Including the accelerator duty factor, the rates

will be 0.05 and 0.5 Hz for fast and slow extraction, respectively. Over five operational

years of 5× 107 s, there will be at most 2.5× 107 cosmic rays and background rejection

of 1/(2.5 × 106) = 4 × 10−8 is required. Assuming cracks can be managed, then the

fiducial cuts described for rejecting rock muons are sufficient.

The fiducial cuts already described will be more than adequate for rejecting cosmic-

ray muons using an eight-outermost-bar fiducial cut (10−8 rejection). Cosmic-ray muons

should never fake the muon signal. Independent work repeated this study using C RY

and G E A N T 4, coming to the same conclusions within 50% [137], which is suitable for

these purposes.

Cosmic-ray muons also provide useful information. In addition to being useful for

locating dead channels, they may also be used to measure the detector’s magnetic field by

comparing momentum measurements from range vs bending. Current data acquisition

(DAQ) technology should allow for recording all these events.

7.3 χ2
sys

At present, various systematics have been discussed and quantified; however, what re-

mains is incorporating these results in the χ2 so sensitivity plots can be made using

this information. The χ2 defined in the previous chapter includes only statistical ef-

fects, but it is possible to include systematic uncertainties by using the so-called “pull

method” [138], which has also been used to analyze data in experiments such as SNO’s

low-energy-threshold analysis [139]. So-called “penalty terms” are added to the χ2 and

marginalized over (i.e., minimized). A normalization systematic is introduced—shape

systematics can be introduced if this were not a total rates analysis—and this is incor-

porated into the χ2 by introducing a scale factor (1+ ζ), where ζ is minimized. The
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Table 7.5: List of systematics considered and how much they affect appearance physics.
Hadronic model uncertainties are how well NC interactions are modeled within the
MC. Electromagnetic models are how well understood muon interactions with steel in
scintillator are understood.

Source νe→ νµ CC ν̄µ→ ν̄µ CC ν̄µ→ ν̄µ NC
Hadronic model 0% 15% 15%
Electromagnetic model 2% 0 0
Magnetic field <1% <1% <1%
Steel 0.2% 0.2% 0.2%
Flux 1% 1% 1%
Cross section 4% 40% 40%

uncertainty on ζ is σζ, which is corresponds to one of the systematic uncertainties

derived earlier. Generalizing to k systematics, χ2
sys is then defined as

χ2
sys =min

ζi

�

χ2(Θ0,Θ1,ζi) +
∑

j

�

ζi

σζi

�2�

, (7.16)

where Θ0 and Θ1 are the previously defined oscillation parameters to be compared.

The model to be tested is made to agree as much as possible within errors before the

goodness of fit is determined.

The χ2 that has been defined allows for determining if an experiment is sensitive

to various oscillation parameters. The systematics discussed previously are summarized

in Table 7.5, and are all normalization systematics. The dominant systematic are the

cross section uncertainties in this setup because a near detector has not been assumed,

though may be present in the final design. As will be seen, not having a near detector is

not an issue due to the signal to background ratio of 61:5. The signal errors are less than

the background errors since the cross-section model uncertainties are smaller for muon

final states than nonmuon final states. The external background rates seen in Table 7.6

are negligible compared to the half dozen backgrounds from disappearance channels.

Using the systematic errors as defined, a contour comparing the χ2
sys. and χ2

stat. is

shown in Fig. 7.6. The contour only displaying systematics information is shown in
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Table 7.6: Background register.

Source Events
Cosmic-ray muons �1

Atmospheric neutrinos ≤ 0.14
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Figure 7.6: Sterile neutrino sensitivity comparing with (red) and without systematics
(black) of the appearance channel νe→ νµ assuming 1021 POT, a stored µ+ beam, and
1.5 kt detector at 2 km. For the systematic χ2, a 4% signal and 40% background normal-
ization uncertainty is assumed. This channel is the CPT of the LSND anomaly ν̄µ→ ν̄e.
In this frequentist study, sensitivity to the LSND and MiniBooNE 99% confidence inter-
val [104] is 10σ.
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Figure 7.7: Sterile neutrino sensitivity using a systematics χ2 of the appearance channel
νe → νµ assuming 1021 POT, a stored µ+ beam, and 1.5 kt detector at 2 km. For the
systematic χ2, a 4% signal and 40% background normalization uncertainty is assumed.
This channel is the CPT of the LSND anomaly ν̄µ→ ν̄e. In this frequentist study, sensitivity
to the LSND and MiniBooNE 99% confidence interval [104] is 10σ.
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Fig. 7.7. Due to the signal to background ratio of 61:5, introducing systematic errors

does not affect the sensitivity of νSTORM (compare to Fig. 6.8). This can be understood

as follows: if there are 61 signal—as is true throughout the LSND-favored region—and 5

background events, then even doubling the backgrounds does not affect the performance.

If one expects 10 backgrounds, but sees 61 events, then it is clear that there is some new

physics producing these additional appearance events.

7.4 Conclusions

Using the experience of MINOS, the systematics have been explored and shown to be

negligible. Systematics related to the hadronic and electromagnetic interaction models

were explored and shown to be small due to the work of MINOS and their CalDet. The

field will be known within νSTORM to a better precision than is needed for the appear-

ance physics since small field variations are averaged out over the path of the muon,

and lowering the field by 20% results in similar detector performance. The composition

and thickness of the steel can be measured accurately. Flux uncertainties will be small

due to being able to measure the stored muon beam. Cross-section systematics did not

affect the sensitivity. Cosmic ray and atmospheric neutrino backgrounds are negligible.

Incorporating all of this information into a systematic χ2 demonstrates that νSTORM is

still sensitive at the 10σ level to the LSND effect.
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Chapter 8

Oscillation-parameter estimation

Despite the central question of the thesis being how to determine if what LSND observes

is sterile neutrinos, initial parameter-estimation calculations are presented. Measure-

ment of the parameters ∆m2
41 and θeµ requires resolving their degeneracies in the os-

cillation probability. If only total rates are measured, then the oscillation probability

Pr.[νe→ νµ] is measured to be some value, but since

Pr.[νe→ νµ] = sin2(2θeµ) sin
2

�

∆m2
41 L

4E

�

(8.1)

it is impossible to determine∆m2
41 and θeµ individually. The equation is underconstrained—

there is one measurement, but two variables. To measure the parameter ∆m2
41, infor-

mation in the shape of the neutrino energy distribution must be used; however, MINDs

are sampling calorimeters with limited energy resolution. As will be seen, removing

this parameter degeneracy requires using information from either the other oscillation

channels or a better detector technology.

The determination of the precision requires understanding what the measured neu-

trino energy distribution will be for the signal. The neutrino energy resolution should be

similar to previous experiments, which has been checked in [50]. The neutrino energy Eν

has two components: the muon energy Eµ and the hadronic energy Ehad. From the experi-
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Figure 8.1: Overlaid kinematic distributions of Eν, Eµ, and hadronic energy for averaging-
regime νe and ν̄µ fluxes. Negative values are retained to avoid any potential bias.
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Figure 8.2: The measured energy EM versus the true neutrino energy ET .
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Figure 8.3: The relative error between the measured neutrino energy EM and the true
neutrino energy ET . The RMS of the fractional difference is 12%.
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ence of MINOS, the muon energy above threshold—remember the 2-GeV range cut lead-

ing to Fig. 5.15—can be measured to 5% based only on range. Also, summing all the hits

in the hadronic shower should allow Ehad to be measured to 50%/
p

E (in GeV) [140].

An estimate of the Eν resolution can be made based on the Eµ and Ehad resolutions and

using a toy MC. In Fig. 8.1, the effect of convolving these resolutions with the unsmeared

Eν, Eµ, and Ehad kinematic distributions presented in Fig. 5.3 is shown. The Eν resolu-

tion arises from summing the smeared Eµ and Ehad energy distributions. Comparing the

unsmeared and smeared true neutrino energy in Fig. 8.2 and 8.3 shows that a 12%

measurement of the neutrino energy should be possible.

Using this resolution, neutrino-energy distributions are shown in Fig. 8.4 for different

∆m2
41, and the significance of the difference is small due to low statistics. Nevertheless, a

spectral likelihood fit is performed to determine the extend to which shape information

aids parameter estimation.

The χ2 discussion from p.p. 132 can be extended to include shape information.

Specifically, instead of one measurement X , a set of N = 16 measurements X= {X0, X1, ..., X15}

is used, where each measurements corresponds to a 250 MeV bin in measured neutrino

energy. For example, X15 corresponds to the number of events with measured energies

between 3.75 and 4.0 GeV. The χ2 definition follows from the generalization of the

likelihood function and test statistic

L(X|Θ) =
N
∏

i=1

f (X i|Θ) =
∏

i

e−λiλ
X i
i /X i! (8.2)

Λ =
L(X|Θ0)

maxΘ1
L(X|Θ1)

=
∏

i

e−λi+X i (λi/X i)
X i , (8.3)

where λi is the expected number of events (λi = Peµ(E)×σ(E)× Φ(E)× ε(E)) in the

ith bin with X i actual events. Therefore, as before, the χ2 is:

χ2 = 2
∑

i

�

λi − X i + X i ln
�

λi

X i

��

. (8.4)
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Figure 8.4: Comparison of measured neutrino-energy distributions for different values
of ∆m2

41. The distributions for mass splittings of 0.89 eV2 and 10.89 eV2 are shown in
(a). The 10.89-eV2 distribution is normalized to the same area as the other distribution
(i.e., 61 events). The significance of the shape differences between the distributions is
shown in (b).
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Figure 8.5: Precision study. The (3+1) best-fit point ∆m2
41 = 0.89 eV2, |Ue4|2 = 0.025,

and |Uµ4|2 = 0.023 is used as the true test point. The 90% and 99% confidence levels
are shown.

One important difference between the previous sensitivity study and this precision

study is that the hypothesis Θ0 no longer corresponds to 3× 3 mixing, but now to the

LSND best-fit point of ∆m2
41 = 0.89 eV2, |Ue4|2 = 0.025, and |Uµ4|2 = 0.023. Only the

measured signal Eν spectrum will be used for the precision study presented here since

small background levels (e.g., Fig. 6.7) do not affect it.

A backgroundless parameter-estimation analysis is shown in Fig. 8.5. As was claimed

above, νSTORM is unable to resolve the parameter degeneracy (i.e., no closed contour).

The 4% systematic uncertainty (from Table 7.5) was used, but using a 1% uncertainty

does not resolve the degeneracy. Similarly, the νSTORM target hall is designed for 400

kW; therefore, another study was performed using flux with a factor of 5 increase (8.5×
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1018 muons; 4 years of 100 kW and 4 years of 400 kW) and the degeneracy remained.

Lastly, changing the stored muon energy anywhere between 2 GeV and 10 GeV also is not

beneficial. With a fixed baseline and this detector technology, the parameter-estimation

abilities of νSTORM are limited.

The MIND detector is unable to resolve the parameter degeneracy in the conventional

νSTORM design using exclusively appearance information. This is not an issue for

refuting the LSND signal; however, if there are sterile neutrinos, then a magnetized

LAr TPC should be commissioned to understand these neutrinos since the lower energy

threshold would be closer to the oscillation maximum. The energy threshold for LAr TPCs

is also better. Discovering sterile neutrinos is possible at νSTORM; however, precision

measurements are more difficult.

There are, nevertheless, ways of designing a second phase to νSTORM if sterile

neutrinos are discovered. To probe∆m2
41, one needs L = 4Eπ/(2∆m2

41) = 5 km if E = 3

GeV. (As an aside, the Fermilab site boundary is at 4 km in the current design; therefore,

the decay ring may have to be repositioned.) Previously, the baseline was set to be shorter

because longer baselines result in less flux (i.e., L−2). However, by assuming a new 400

kW target-horn module for 8.5×1018 stored muons, the loses from the detector having a

smaller solid-angle area is counteracted by the increased beam power. In Fig. 8.6, it can

be seen that the parameter-estimation precision is increased. If a 3-kt fiducial volume is

assumed, rather than the 1.3 kt, then Fig. 8.7 shows that closed contours can be made.

The parameter-estimation abilities of νSTORM have now been presented. With the

experimental setup described to discovery sterile neutrinos (i.e., 2 km), the degeneracy

between ∆m2
41 and θeµ cannot be resolved. However, a second phase of νSTORM at 5

km with a new 400 kW target-module would allow for precision measurements of the

sterile neutrino parameter space.
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Figure 8.6: Precision study at 5 km with 8.5× 1018 muons. A new 400 kW target-horn
module was assumed in a second νSTORM phase. The (3+1) best-fit point ∆m2

41 =
0.89 eV2, |Ue4|2 = 0.025, and |Uµ4|2 = 0.023 is used as the true test point. The 90% and
99% confidence levels are shown.
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Figure 8.7: Precision study at 5 km with 8.5× 1018 muons and a larger 3-kt detector. A
new 400 kW target-horn module was assumed in a second νSTORM phase. The (3+1)
best-fit point ∆m2

41 = 0.89 eV2, |Ue4|2 = 0.025, and |Uµ4|2 = 0.023 is used as the true
test point. The 90% and 99% confidence levels are shown.
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Chapter 9

Conclusion and future work

Throughout the course of this thesis, it has been demonstrated that the construction

of a 3.8-GeV/c muon-decay ring could address many current physics questions, with

a MIND at 2 km allowing the study of sterile neutrinos. The everpresent challenge in

particle physics is determining how best to find new physics. The Standard Model is

mankind’s most precise theory, but it neither includes the unknown 95% of the Universe’s

energy density nor has been reconciled with gravity. The theory is incomplete. More

generally than just νSTORM, utilizing the precise nature of muon-decay beams will allow

explorations of the neutrino sector for new physics. Hopefully, studying the neutrino

sector will reveal even more surprises than were found in the quark sector. If we start

building new beams now, we can use them in the future to help determine if there are

more surprises in the neutrino sector.

The accelerator and experiment described here provide a unique opportunity for

exploring a wide range of phenomena. For example, in the long term, demonstrating

the muon-decay beam concept allows for measuring the PMNS matrix to the precision

of the CKM matrix, and hopefully reveal hints of new physics, in addition to being a new

technology that may have both foreseen (i.e., µ collider) and unforeseen uses. In the

medium term, cross-section measurements will increase the sensitivity of experiments
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such as LBNO and LBNE to leptonic CP violation—primarily by constraining the σνe
/σνµ

ratio—thereby possibly helping explain why this Universe is compromised of matter

rather than antimatter. It also would provide the only νe test beam.

The primary near-term physics case is the sensitivity to light sterile neutrinos, which

come naturally from the discovery of neutrino mass. No proposed facility has comparable

sterile neutrino sensitivity to νSTORM. The facility does not require any new technology.

Detectors are being considered that are similar to previously built detectors. The sterile

sensitivity analysis is simple by requiring only a range and curvature cut. By using

the CPT of the LSND anomalous channel, the muon final state allows for negligible

systematic uncertainties. Therefore, νSTORM is able to exclude sterile neutrinos at 10σ

in a frequentist study.

Even though the physics case has been demonstrated, future work must still be

performed in order to fully optimize the facility for physics other than the appearance

channel. For disappearance analyses, the level to which NC and νe CC can be separated

must be determined, and whether a dedicated LAr TPC is needed with MIND as the

muon ranger. The cross-section measurements should be possible by introducing special

purpose near detectors, but the detector-technology decision has not been made yet.

However, this thesis describes a well-understood neutrino source that contains both
(−)
νe

and
(−)
νµ; therefore it is expected that there will be numerous users of the beam, much

like commercial light and neutron sources (e.g., Diamond, ISIS, ESS).

The physics case is diverse. More importantly, if this experiment is built, physicists

may finally be able to explain the LSND results.
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Appendix A

Optimization of baseline and straight

length for near detector

The number of events at a near detector can be optimized against the decay straight

length and near detector baseline. The arc length is fixed to la = 60 m. Therefore there

are two other free parameters: the baseline lb and the straight length ls. The ring has a

circumference C = 2× (la + ls).

The number of muons that decay toward a detector is proportional to lb/C . The

flux at the detector is—due to solid angle effects—proportional to L−2, where L is the

averaged effective baseline since muons can decay anywhere in the straight.

Define L =
p

ls(ls + lb). The two quantities lb and ls can be maximized. The maxi-

mum of C × L is shown in Table A.1. However, this is not applicable to the stochastic

Table A.1: Optimization with la = 60 m, assuming π→ µ decay channel.

Baseline lb [m] Optimal straight length ls [m]
20 20

p
3' 24

50 10
p

30' 54
100 20

p
15' 77

1500 300
2000 200

p
3' 346
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Table A.2: Optimize with la = 60 m, assuming lπ = 250 m and stochastic injection.

Baseline lb [m] Optimal straight length ls [m]
20 191
50 228

100 272
1500 641
2000 701

injection scheme where pions decay in the straight; therefore another constraint is in-

troduced. The charged pion mass is 139.57018 MeV, and accordingly, a 5-GeV/c pion

has a boost of about γ = 35. The cτ of the pion is 7 m. The decay length of a pion in

the laboratory frame is lπ = 250 m. Another term must be introduced: 1− exp(−ls/lπ).

After including this new pion-decay term, a close near detector at 20 m favors a

200-m decay straight, whereas longer baselines are optimal for longer decay straight

lengths (Table A.2). The reason longer straight lengths are optimal for longer baselines

is that more pions are able to decay in the straight.

For a near detector at 20 m, there is a wide range of acceptable values. For example,

using a 272-m straight length—the optimal value for a 100-m baseline—results in less

than a 5% shift for the 20-m baseline. However, the shift is greater for longer baselines:

there is a 30% shift by choosing a small straight length for baselines of 1.5 km. This is

acceptable because these longer baselines desire straight lengths of over 600 m, which

is not economically optimal; the money would be better spent building a bigger detector.

Therefore the optimal near detector baseline is between 20 and 100 m, and the optimal

straight length is between 250 and 300 m.
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